
АРТЕЛЬ
семейство языков программирования

ООО «Незабудка Софтвер»

Кто мы
• Выпускники БГУИР разных лет (МРТИ до 1993

года)
• Факультет КСиС, кафедра ПОИТ

• Сотрудники компании «Незабудка Софтвер»
• Резидент Парка высоких технологий (ПВТ)

• Преподаём в БГУИР по совместительству
• В настоящее время реализуем проект

электронных таблиц для больших данных
• Из больших проектов в прошлом делали САПР

микроэлектроники
• Авторы патентов в области распределенных баз

данных и поиска по текстовым шаблонам
• Публиковали книги по программированию в

среде Delphi и C++ Builder

2

БГУИР

История (1/2)
• 2019 год. Проект Бусел (англ.

Boocel) — таблицы для больших
данных

• Клиентская часть:
• Веб-браузер, TypeScript;
• Верстак — реактивные

визуальные элементы;
• Реактроник — реактивное

транзакционное управление
состоянием.

• Серверная часть:
• Веб-сервер, .NET;
• Незабудка — объектная

распределённая СУБД с
поддержкой ACID-транзакций.

• Требовался язык автоматизации:
• пользовательского интерфейса;
• запросов на стороне СУБД;
• более мощный, чем язык формул

Excel с функциями МИН, МАКС и
др.

3

История (2/2)
• Встроили язык Python.

• Для платформы .NET имелась реализация (Iron
Python).

• Встроили как Web Assembly на стороне браузера.
• Всё работало невыносимо медленно из-за

взаимодействия объектов Python и JavaScript.
• Если пользовательский интерфейс на русском, то

почему автоматизация на английском?
• Решили создать новый язык прикладного

программирования с русской и английской
лексикой.

• Это же не очень долго, правда?
• Первое внедрение — Бусел.
• Сами «едим свою стряпню».

• Назвали — Артель
• Слово русского происхождения
• На английском и языках с латиницей — Artel:

• Asynchronous, Reactive, Transactional, Extensible
Language

• — Но артель женского рода. — А это не важно
4

Постановка задачи
• Русская и английская лексики

• Как насчёт китайского или арабского (написание справа налево)?

• Возможность решения реальных прикладных задач:
• Веб-приложения для браузера с пользовательским интерфейсом
• Веб-службы, серверы приложений, интегрированные среды и редакторы

• Отказ от своей платформы
• Популярные платформы являются бесплатными и открытыми
• Богатейший набор готовых бесплатных библиотек
• Не нужно самим разрабатывать сборщик мусора.

• Целевые платформы:
• JavaScript в веб-браузере и NodeJS
• .NET
• Java

• Возможность писать на одном языке для всех целевых платформ
• Доступ ко всем возможностям целевой платформы при необходимости
• Использование программных библиотек на русском, английском и других

языках

• Интеграция с существующими репозиториями и менеджерами
пакетов

• NPM, NuGet, др.

• Пригодность для обучения программированию на родном языке
5

.NET

Требования к языку (1/2)
• Переводы имён на разные естественные языки

• Имена с дефисами, нормализация имён для совместимости с целевой платформой
• Модульное программирование

• Единица компиляции — пакет — папка с исходными файлами
• Пакет создаёт пространство имён
• Возможность подключения/использования/импорта пакета целиком

• Объектно-ориентированное программирование
• Взаимодействие с программами на языках C#, Java, TypeScript
• Решение проблемы разных принципов совместимости интерфейсов в .NET/Java и TypeScript
• Возможность написания независимого от платформы кода

• Обобщённое программирование
• Обобщённые типы коллекций: Массив, Список, Множество, Словарь

• Функциональное программирование
• Функциональный тип, безымянные функции, замыкания

• Реактивное транзакционное программирование
• Наблюдаемые переменные (сигналы)
• Реактивные функции и транзакции

6

Требования к языку (2/2)
• Безопасность

• Отказ от значения «пусто» (null, undefined) для ссылочных типов
• Союзные типы (объединение множеств значений разных типов)
• Анализ путей выполнения программы
• Контроль инициализации переменных до использования
• Попутная типизация, сужение типов
• Исчерпывающие проверки вариантов

• Переменные
• изменяемые
• неизменяемые — однократно инициализируемые
• с хранимым значением
• вычисляемые

• Функции
• Именованные параметры
• Отказ от var-параметров
• Возврат нескольких значений из функции
• Асинхронные функции (задачи)

7

Терминология на русском
• Как назвать логический тип?

• Логическое, Булево, Да-Нет
• Как назвать литералы для значений:

истина/ложь, истинно/ложно, да/нет
• Мы не знаем истину. В программе нет лжи.
• Высказывание в один момент времени истинно, а в другой момент ложно.
• Литералы не нужны в выражениях:

если условие-соблюдено тогда ...
• Литералы используются в командах присваивания и в редакторах свойств:

конец-игры = да
• Как назвать тип вещественных чисел?

• Вещественное, Дробное, Число
• Тип Целое не вызывает вопросов

• Как правильно: ключевые слова или служебные слова?
• Как правильно: операторы, инструкции или команды?
• Как лучше: сокращать имена или не сокращать?

8

На какие языки опирались?
• Языки, с которыми имеется большой профессиональный и

педагогический опыт:
• Object Pascal
• С++, C#, Java, TypeScript
• Python

• Языки, которые исследовали, но не использовали
профессионально:

• Oberon, Eiffel
• Kotlin, Swift, Go, Rust, Dart, Carbon.

• Языки с русской лексикой:
• 1С:Элемент, Тривиль.

9

Какой нам нужен компилятор
• Программировать на языке без среды невозможно

• Будем ли разрабатывать свою среду? Нет.
• В какой среде программируем сами? VSCode.
• Она бесплатная, открытая, с поддержкой русского языка? Да.
• Её редактор кода можно встроить в Бусел? Да, MonacoEditor.
• Что важнее всего программисту при написании и чтении кода?

Навигация.
• На каком языке разрабатывать?

• На языке первой целевой платформы — TypeScript.
• Изучали код открытых компиляторов: TypeScript, C#, Kotlin,

Dart и др.
• Компилятор для среды сильно отличается от пакетного

компилятора.
• Работа с конкретным синтаксическим деревом, сохранение всех

лексем
• Изменение даже одного символа текста — перезапуск анализа
• «Ленивый» анализ из любой точки дерева (куда смотрит указатель)
• Асинхронный анализ, возможность быстрой его отмены
• Первым делом — компилятор для среды, пакетный компилятор —

потом.
• Пока у нас не будет отладчика, у нас нет языка

10

Этапы создания компилятора
1. Расширение к VSCode с анализом и подсветкой

синтаксиса
• Синтаксический анализ с восстановлением после ошибок
• Связывание имён, определение типов выражений, показ

ошибок

2. Простой генератор кода
3. Простой семантический анализ

• Проверка совместимости типов
• Выведение типа переменной на основе начального

значения
• Навигация по коду, поиск ссылок, подсказки, показ

заголовков вызываемых функций, авто-дополнение имён
• Переводы имён: русский, английский

4. Интеграция с платформами JavaScript и NodeJS
• Интерфейсные и реализующие пакеты
• Интеграция компилятора TypeScript, импорт библиотек из

D.TS

5. Отладка
• Поддержка карт исходных текстов и русских имён
• Компилятор командной строки в репозитории NPM

6. Сложный семантический анализ
• Перегруженные функции
• Анализ потока управления: сужение типов, контроль

инициализации переменных до их использования
• Выведение аргументов типа обобщённых функций
• Переводы текстов (локализуемый текст)

7. Диалекты: А, М 11

Расширение к VSCode. Игра «Угадай число»

12

Посмотреть пример «Угадай число» в
редакторе VSCode по ссылке

https://rutube.ru/video/3682a579dfa08baaa622a97d0c42f925/

Разные задачи — разные требования. Диалекты А и
М
Артель-А

• Более привычен
программистам на языках
TypeScript, Kotlin, C#, Java,
Swift.

• Легче переключаться на
языки с английской лексикой
и обратно.

Артель-М
• Меньше понятий, служебных

слов и знаков операций.
• Ориентирован на

встраивание и скрипты.

13

класс Лекция // по умолчанию нерасширяемый
{
 тема: Текст // неизменяемая после создания
 перем время: ДатаВремя

 создание(тема: Текст, время: ДатаВремя)
 {
 объект.тема = тема; объект.время = время
 }

 расширенная функция в-текст(): Текст
 {
 вернуть "{тема}, {время}"
 }
}

А

тип Лекция // по умолчанию расширяемый
 пер тема: Текст
 пер время: Дата-Время

 операция создание(тема: Текст, время: Дата-Время)
 объект.тема = тема, объект.время = время
 всё

 #замена-реализации // модификатор объявления
 операция в-текст(): Текст
 возврат "{тема}, {время}"
 всё
всё

М

Состояние проекта
• Расширение к VSCode и Eclipse Theia

• Подсветка, навигация, подсказки, рефакторинг и др.
• Отладка

• Пакетный компилятор как NPM-пакет в пространстве @artel.
• Управление пакетами через NPM и их публикация в репозитории NPMJS

• Целевая платформа JavaScript в браузере и NodeJS на стороне
сервера

• Перевод на русский значительной части программного интерфейса веб-
браузера

• Документация
• Обзоры, руководство, учебник

• Поиск площадки для Git-зеркала, чистка исходников
• Лицензия Apache 2.0

14

