
Алексей Недоря, декабрь 2025

Языки программирования. Лекция 2.
Как разрабатывать.

Личная история

Профессия: Языки программирования и компиляторы

2

Краткая профессиональная биография:
● Первый компилятор: 1984
● Компиляторы для 9 языков программирования
● Участие в стандартизации языков программирования

○ Modula-2 ISO/IEC
○ Oberon-2 Oakwood Guidelines

● Системная архитектура
● Разработка 7 языков программирования

● t.me/vorchalki_o_prog
● http://digital-economy.ru/avtory/aleksei-nedoria-sy

nergetic-lab-ru
● https://ontonet.org/gruppy/vorchalki-o-programmir

ovanii
● http://алексейнедоря.рф/

http://digital-economy.ru/avtory/aleksei-nedoria-synergetic-lab-ru
http://digital-economy.ru/avtory/aleksei-nedoria-synergetic-lab-ru
https://ontonet.org/gruppy/vorchalki-o-programmirovanii
https://ontonet.org/gruppy/vorchalki-o-programmirovanii

Ликбез: Разработка языков программирования

3

Прочитано:
● История. Зачем и почему. 26.11.2025 запись

17.12.2025:
● Как разрабатывать. Личная история

● Модула-0
● Расширение Модулы-2 до Модулы-X
● Вир/а0
● Вир/а1
● Первый корпоративный (язык К1)
● Итоги

Следующие лекции:
● Как. Общий подход
● Как. Ответы на вопросы, пример Тривиля
● ?

https://ontonet.org/gruppy/vorchalki-o-programmirovanii/videos/razrabotka-yazykov-programmirovaniya-lektsiya-1

Путь через Модулу-2: от Бахуса (Burroughs 6700) к Кроносу

4

1983-1984
● Leo Кузнецов: Модула-2 компилятор для

Кроноса на B6700 (ALGOL Burroughs)
● Leo и я: эмулятор Кроноса, ядро ОС
● Кронос 2 для PDP-11 (QBus)

последовательная
линия

Путь через Модулу-0: мимо Бахуса к Кроносу

5

Шаг 1: Электроника-60 (RSX-11)
● КАС (Кронос ассемблер) на Паскале
● Модула-0 компилятор без семантического анализа на КАСе: 3

разработчика/2 недели (пиши правильно!)
Шаг-2: Кронос (мини ОС на КАСе)

● Модула-2 на Модуле-0 (магическое превращение в Модулу-2)
● Excelsior OS на Модуле-2 => Excelsior iV

Модула-0: Уроки этой басни

6

Внесение (правильных) ограничений может сократить трудоемкость
разработки в десятки и сотни раз.

Использовано:
● Везде, но особенно:
● Вир/а0
● Тривиль

Модула-2 => Модула-Х: Динамические массивы (ОС и библиотеки)

7

// Модула-2
PROCEDURE p1(a: ARRAY OF INTEGER);
BEGIN
END p1;

VAR a: ARRAY [0..7] OF INTEGER; (* константы *)

// Модула-Х
VAR a: POINTER TO ARRAY OF INTEGER;

NEW(a, 15);

● Как выделять буфера в ОС?
● Как делать динамические

массивы?
● Как делать хеш-таблицы?

Модула-2: Ужасный вывод

8

C printf("The factorial of %d is %d\n" , i, fact(i));

Go fmt.Printf("The factorial of %d is %d\n" , i, fact(i))

Typescript console.log(`The factorial of ${i} is ${fact(i)}`)

Модула-2

InOut.WriteString ("The factorial of ");

InOut.WriteCard (i, 2);

InOut.WriteString (" is ");

InOut.WriteCard (fact(i), 0);

InOut.WriteLn;

Модула-X: Удобный вывод и строковые операции

9

C printf("The factorial of %d is %d\n" , i, fact(i));

Go fmt.Printf("The factorial of %d is %d\n" , i, fact(i))

Typescript console.log(`The factorial of ${i} is ${fact(i)}`)

Модула-2 ужас-ужас

Модула-X Printf.printf("The factorial of %2d is %d\n" , i, r);

Модула-X: Уроки этой басни

10

● Точечные и органичные расширения языка могут существенно
увеличить выразительность языка и продуктивность разработчика.

● Есть конструкции, которые обязательно должны быть.

Использовано:
● Везде, но особенно:
● Первый корпоративный
● Тривиль

Вир/а0: Сборка на максимум - проблемы

11

2003-2006:
● Эксперименты со сборочным программированием
● Язык для разработки компонент: Delphi
● Бинарные компоненты: DLL
● Схема: XML-like

Итог:
● ужас-ужас: винда и дельфи сопротивляются
● странные ошибки, непредсказуемое поведения, зависимости
● большой объем каждой компоненты - в каждой DLL куча библиотек
● очень сложно, не технологично

Вир/а0: Сборка на максимум - решение

12

Решение:
● Выбросить все лишнее, как минимум: Delphi и DLL
● Простейший язык программирования
● Максимально простой компилятор (чтобы не отвлекаться на дополнительные работы):

○ Табличный разбор
○ Генерация для простой стековой машины
○ Табличная эмуляция команд стековой машины через команды x86

● Простейший бинарный формат, в котором есть только необходимое
● Слой, отделяющий от платформы (Windows)

Вир/а0: Язык

13

● Русский язык с пробелами (ЯРМО)
● Разделение семантики по синтаксису:

○ вызов внутренний
○ вызов тезаурусный
○ вызов …

● Типовая система: отсутствует! (FORTH)
○ Один тип данных: Слово64
○ Целое число или указатель
○ Вещественные через вызовы

● Нет описаний переменных
● Семантический анализ: отсутствует! (как в

Модуле-0 - пиши правильно)
● Правое присваивание (легче генерить)
● Оператор “проверить” (guard, гл. шампур)
● Структура привязана к среде разработки

Вир/а0: Язык. Ничего встроенного. Сборка!

14

Сборка на всех уровнях:
● Инструмент
● Тезаурус
● GUI
● Сервис

○ Отладка
○ Обновление
○ …

● Программа

Вир/а0: Табличный компилятор и табличный ассемблер

15

● ”если” без
“иначе”

● один цикл:
“пока”

● “сохранить” для
“:=”

● разные вызовы
● явное начало

выражения
● вызов - не часть

выражения

явное начало выражения: x = 1 + 2 => вычислить 1 + 2 . сохранить х .

Вир/а0: Уроки этой басни

16

● Ограничения языка и компилятора делают чудеса:
○ Язык и компилятор сделаны за 1 неделю
○ Язык впоследствии расширялся, подход и устройство компилятора не менялось

● Убирание зависимостей
○ Очень сильно влияет на скорость и качество разработки
○ Этот урок уже был дан в Кроносе, но был осознан только здесь

● Изменение условий задачи (сборка - “странная” задача)
○ требует пересмотра привычных решений (нужны “странные” решения)

Использовано:
● Минимизация зависимостей: везде, Тривиль
● Поиск непривычных решений: везде, Тривиль, Арвиль

Вопросы

EOF

