Pony tutorial

Contents
Pony Tutorial 9
What’s Pony, anyway? 9
The Pony Philosophy: Get Stuff Done 10
Guiding Principleso 10
More help o e e 11
Help us o o e 11
Getting Started 12
What You Need 12
The Pony compiler oL 12
Atexteditor 12
The compiler 12
Compiling your programo e e e e e 13
Hello World — Your First Pony Program 13
The code e e e 13
Compiling the program L e 13
Running the program Lo 14
Hello World — How It Works 14
Line 1 . . . o e 14
Line 2 . . o o e e 15
Line 3 e 15
That’s it! 15
Types 15
The Pony Type System at a Glance 16
Static vs Dynamic: What’s the difference? 16
Types are guaranteeso L e e 16
What guarantees does Pony’s type system give me? 16
Classes 17
What goes in a class? L 17
Fields o o 17
Constructors e e 17
Zero Argument Constructors 18
Functions e 19
Finalisers o . oL 20
What about inheritance? 21

Naming rules e e

Primitives
What can you use a primitive for?
Built-in primitive types
Primitive initialisation and finalisation

Actors
Behaviours e
Message Passing L e e e
Concurrent e
Sequential Lo e
Why is this safe?
Actors are cheap e
Actor finalisers L

Traits and Interfaces
Nominal subtyping L
Structural subtyping
Nominal and structural subtyping in Pony o000
Nominal subtyping in Pony,
Structural subtyping in Pony oo oo
Differences between traits and interfaces
Private methods L
Open world enumerations
Open world typing e

Structs

Type Aliases
Enumerations L e e e e e e e
Complex types o o e e e e
Other stuff e

Type Expressions
Tuples e
Unions o e e e
Intersections L e e e
Combining type expressionso e e e e e

Expressions

Literals
Boolean Literals e
Numeric Literals e
Character Literals e
Multibyte Character literals

21
21
22
22

23
23
23
23
24
24
24
24

25
25
25
26
26
27
27
28
28
29

29
30
30
30
30
31
31

31
31
32
33

33
33
34
34
35

35

String Literals
String Literals and Encodings oo
Triple quoted Strings
String Literal Instances

Array Literals oL
Type inference e
As Expression
Arrays and References

Variables
Local variables e
Var vs. let o e e
Fields e e
Embedded Fields e
Global variables
Shadowing L

Operators
Infix Operators
Operator aliasing e
Short circuiting L e
Unary operators
Precedence

Arithmetic
Integerso
Pony’s default Integer Arithmetic
Unsafe Integer Arithmetic
Partial and Checked Arithmetic
Floating Point e e
Unsafe Floating Point Arithmetic

Control Structures
Conditionals e
Control structures are expressions e e e
Loops e e e e
While e
Break e

For .

Match Expressions

Matching: the basics L

Elsecases o
Matching on values Lo
Matching on type and value
Captures e
Implicit matching on capabilities in the context of union types
Matching tuples
Guards e

40
40
41
41
43
43
43

43
43
44
45
45
46

47
47
47
48
49
50
50

51
o1
52
54
54
54
55
55
56

As Operator

Expressing a different type of an objecto oo
Specify the type of items in an array literal

Methods
Functions . .
Constructors
Calling

Default arguments
Named arguments e e e e

Chaining . . .

Anonymous methods

Privacy . . .
Precedence .

Errors

Raising and handling errors L Lo
Partial functions L
Partial constructors and behaviours oL
Try-then blocks

With blocks .

Language constructs that can raise errorso
Comparison to exceptions in other languages

Equality in Pony
Identity equality
Structural equality e

Primitives and

Sugar

Apply
Create

equality e

Combined create-apply

Update . . .
See also . . .

Object Literals

What’s this look like, then?

Lambdas . .
Actor literals

Primitive literals e

Partial Application

A simple case

Out of order arguments
Partial application is just alambda L Lo
Partially applying a partial application

Reference Capabilities

Reference Capabilities
Rights are part of a capabilityo oo

Basic concepts

62
62
65

65
66
66
67
68
69
70
70
71
71

71
71
72
73
73
73
74
74

74
74
75
76

76
76
7
78
78
79

79
79
80
82
83

83
83
84
84
84

84

Shared mutable data is hard oo
Immutable data can be safely shared 0.
Isolated datais safe
Isolated data may be complex o
Every actor is single threaded L.
Type qualifiers L e e e
The list of reference capabilities L
How to write a reference capability
How to create objects with different capabilities

Reference Capability Guarantees
What is denied e
Mutable reference capabilities o
Immutable reference capabilities oL
Opaque reference capabilities e

Consume and Destructive Read
Consuming a variable Lo
Destructive read

Recovering Capabilities
Why is this useful?
What does this look like?
How does this work?
Automatic receiver recovery e e e e

Aliasing
Aliasing and deny guarantees e e
What counts as making an alias? L
Allas types e e e e
Ephemeral types e

Passing and Sharing References
Passing e e
Sharing oL
Reference capabilities that can’t besent L.

Capability Subtyping
Simple subtypes L
Subtypes of unique capabilities L L o
Temporary Unique acCess v v v v e e e e e e e e e e e e e e e

Combining Capabilities
Viewpoint adaptation L
Explaining why e
Reading from an iso variable oo oo
Reading from a trn variable Lo
Reading from a ref variable oo oo
Reading from a val variable
Reading from a box variable L oL oo
Reading from a tag variableo oo
Writing to the field of an object Lo

89
89
89
89
90

90
90
91

91
91
92
93
93

93
94
94
94
95

95
95
95
96

96
96
97
97

Arrow Types aka Viewpoints
Using this->as a viewpoint L L L o
Using a type parameter as a viewpoint
Using box-> as a viewpoint L L

Reference Capability Matrix
Local and global aliases L
Reference capability matrix L L Lo

Object Capabilities

Object Capabilities
How is that unforgeable?
What about global variables?
How does this help?
Capabilities and concurrency e

Delegating and restricting authority
Restrict, then delegate your authorityo ..
Authorization-friendly interface oo
Authority hierarchies

Trust Boundary
Trust boundaries e e
Safe packages

Generics
Generic Classes e e
Type parameter defaults
Generic Methods e

Generics and Reference Capabilities
An iso specificclass
A capability generic class

Constraints
Capability Constraints e

Packages
The package structure L

Use Statement
UsSe names e e
Scheme Indicators

Standard Library
Testing

Testing with PonyTest
Example program
Test names e e e
Aggregation L
Long tests L e e

100
100
101
101

102
102
102

103

104
104
104
104
104

104
106
106
107

108
108
108

108
108
110
110

111
113
114

115
115

116
116

116
117
118

119

119

Exclusion groups e e 121

Tear down oL 121
Additional resources Lo 122
Testing with PonyCheck 122
Usage . . .« o o e 122
Integration with PonyTest Lo 123
Additional resources 124
C-FFI 124
Calling C from Pony 124
Safely does it e 124
Ctypes . . . o 125
Get and Pass Pointers to FFL 00 oo 126
Working with Structs: from Pony to C 126
Working with Structs: from CtoPony L. 127
Return-type Polymorphismo oo 127
Variadic C functions Lo 128

FFI functions raising errors L 129
Type signature compatibilityo 129
Calling FFI functions from Interfaces or Traits 130
Linking to C Libraries 131
Use for external libraries L oo 131

C ABI 132
Writing a C library for Pony Lo 132
Callbacks 134
Bare functions 134
Bare lambdaso 135
Anexample 135
Gotchas 136
Divide by Zero 137
Divide by zeroin Pony oL 137
Divide by zero on floating pointso oL 137
Garbage Collection 138
Garbage Collection in the world at large L. 138
Garbage Collection in Pony 138
Long running behaviors and memory L Lo oL oL 138
Scheduling 138
FFI and monopolizing the scheduler 0. 139
Long running behaviors L Lo 139
Function Call Side Effects 139
Recursion 140
Where Next? 140

“Learn” section the Pony website,
Planet Pony e
Pony Patterns e
Standard Library Documentation
Pony Zulip e
Pony Virtual Users” Group o
Afinal word L

Appendices

PONYPATH
Adding to PONYPATH o ot e e e e e e e e e e e e e
Unix/Mac
Windows oL

Lexicon
Terminology e e e

Symbol Lookup Cheat Sheet
Keywords

Examples
Enumeration with values
Enumeration with values with namespace
Enumeration which can be iteratedo oo
Pass an Array of valuesto FFT
How to access command line arguments
How to use the cli package to parse command line arguments
How to write tests e
Operator overloading (easy for copy and paste)
Create empty functions inaclass oo
How to create Arrays with values
How to modify a lexically captured variable in a closure

Whitespace
Mostly insignificant whitespace L e
Semicolons e
Docstrings e e e e
Comments e e

Compiler Arguments
Runtime options for Pony programs 0oL

Memory Allocation at Runtime
Fast, Safe and Cheap L
But Caveat Emptor e
And, long-running actorso

Garbage Collection with Pony-ORCA
Pony-ORCA characteristics

Platform-dependent Code

141

142
142
142
142

142
142

143

145

146
146
146
146
147
147
147
148
149
149
150
150

150
150
151
151
152

152
153

153
153
153
153

154
154

155

A Short Guide to Pony Error Messages 155

left side must be something that can be assignedto., 155
left side is immutable L 156
receiver type is not a subtype of target type L. 156

A note on compiler versions 158
Program Annotations 158
What can be annotated 158
The effect of annotations 158
Annotations in the Pony compiler 0oL 159

NodOC e e e e e e e 159
NOSUPETtYPEe v i i e e e e 159
Serialisation 160
Caveats e e e 161
Custom Serialisation and Deserialisation 161
Custom Serialisation 162

Custom Deserialisationo 162
Considerations e 162
Exampleo 163

Pony Tutorial

Welcome to the Pony tutorial! If you’re reading this, chances are you want to learn Pony. That’s
great, we're going to make that happen.

This tutorial is aimed at people who have some experience programming already. It doesn’t
really matter if you know a little Python, or a bit of Ruby, or you are a JavaScript hacker, or
Java, or Scala, or C/C++, or Haskell, or OCaml: as long as you've written some code before,
you should be fine.

What’s Pony, anyway?

Pony is an object-oriented, actor-model, capabilities-secure programming language. It’s object-
oriented because it has classes and objects, like Python, Java, C+-+, and many other languages.
It’s actor-model because it has actors (similar to Erlang, Elixir, or Akka). These behave like
objects, but they can also execute code asynchronously. Actors make Pony awesome.

When we say Pony is capabilities-secure, we mean a few things:

o It’s type safe. Really type safe. There’s a mathematical proof and everything.

e It’s memory safe. Ok, this comes with type safe, but it’s still interesting. There are no
dangling pointers, no buffer overruns, heck, the language doesn’t even have the concept
of null!

o It’s exception safe. There are no runtime exceptions. All “exceptional situations” have
defined semantics, and they are always handled.

e It’s data-race free. Pony doesn’t have locks or atomic operations or anything like that.
Instead, the type system ensures at compile time that your concurrent program can never
have data races. So you can write highly concurrent code and never get it wrong.

e It’s deadlock free. This one is easy, because Pony has no locks at all! So they definitely
don’t deadlock, because they don’t exist.

Pony can’t stop you from writing logical bugs, but it can remove entire classes of bugs from
being possible. The Pony compiler prevents you from unsafely accessing memory concurrently.

https://www.ponylang.io/media/papers/opsla237-clebsch.pdf

If you’ve ever done concurrent programming, you know how hard such things can be to track
down. With Pony, poof, don’t worry about it; concentrate on “your logic”. We think that
makes Pony awesome and we hope you come to agree with us.

We’ll talk more about capabilities-security, including both object capabilities and reference
capabilities later.

The Pony Philosophy: Get Stuff Done

In the spirit of Richard Gabriel, the Pony philosophy is neither “the-right-thing” nor “worse-is-
better”. It is “get-stuff-done”.

e Correctness. Incorrectness is simply not allowed. It’s pointless to try to get stuff done if
you can’t guarantee the result is correct.

e Performance. Runtime speed is more important than everything except correctness. If
performance must be sacrificed for correctness, try to come up with a new way to do
things. The faster the program can get stuff done, the better. This is more important than
anything except a correct result.

o Simplicity. Simplicity can be sacrificed for performance. It is more important for the
interface to be simple than the implementation. The faster the programmer can get stuff
done, the better. It’s ok to make things a bit harder on the programmer to improve
performance, but it’s more important to make things easier on the programmer than it is
to make things easier on the language/runtime.

e Consistency. Consistency can be sacrificed for simplicity or performance. Don’t let exces-
sive consistency get in the way of getting stuff done.

e Completeness. It’s nice to cover as many things as possible, but completeness can be
sacrificed for anything else. It’s better to get some stuff done now than wait until everything
can get done later.

The “get-stuff-done” approach has the same attitude towards correctness and simplicity as “the-
right-thing”, but the same attitude towards consistency and completeness as “worse-is-better”.
It also adds performance as a new principle, treating it as the second most important thing
(after correctness).

Guiding Principles

Throughout the design and development of the language the following principles should be
adhered to.

e Use the get-stuff-done approach.

e Simple grammar. Language must be trivial to parse for both humans and computers.
e No loadable code. Everything is known to the compiler.

o Fully type safe. There is no “trust me, I know what I'm doing” coercion.

e Fully memory safe. There is no “this random number is really a pointer, honest.”

o No crashes. A program that compiles should never crash (although it may hang or do
something unintended).

e Sensible error messages. Where possible use simple error messages for specific error cases.
It is fine to assume the programmer knows the definitions of words in our lexicon, but
avoid compiler or other computer science jargon.

10

http://www.jwz.org/doc/worse-is-better.html

e Inherent build system. No separate applications required to configure or build.
e Aim to reduce common programming bugs through the use of restrictive syntax.

e Provide a single, clean and clear way to do things rather than catering to every program-
mer’s preferred prejudices.

e Make upgrades clean. Do not try to merge new features with the ones they are replacing,
if something is broken remove it and replace it in one go. Where possible provide rewrite
utilities to upgrade source between language versions.

e Reasonable build time. Keeping down build time is important, but less important than
runtime performance and correctness.

o Allowing the programmer to omit some things from the code (default arguments, type
inference, etc) is fine, but fully specifying should always be allowed.

e No ambiguity. The programmer should never have to guess what the compiler will do, or
vice-versa.

e Document required complexity. Not all language features have to be trivial to understand,
but complex features must have full explanations in the docs to be allowed in the language.

o Language features should be minimally intrusive when not used.

o Fully defined semantics. The semantics of all language features must be available in the
standard language docs. It is not acceptable to leave behaviour undefined or “implemen-
tation dependent”.

o Efficient hardware access must be available, but this does not have to pervade the whole
language.

e The standard library should be implemented in Pony.

o Interoperability. Must be interoperable with other languages, but this may require a shim
layer if non primitive types are used.

o Avoid library pain. Use of 3rd party Pony libraries should be as easy as possible, with no
surprises. This includes writing and distributing libraries and using multiple versions of
a library in a single program.

More help

Working your way through the tutorial but in need of more help? Not to worry, we have you
covered.

If you are looking for an answer “right now”, we suggest you give our Zulip community a try.
Whatever your question is, it isn’t dumb, and we won’t get annoyed.

Think you’ve found a bug? Check your understanding first by writing to the “beginner help”
stream in Zulip. Once you know it’s a bug, open an issue.
Help us

Found a typo in this tutorial? Perhaps something isn’t clear? We welcome pull requests against
the tutorial: Pony Tutorial.

Be sure to check out the contribution guidelines before opening your PR.

11

https://ponylang.zulipchat.com/#narrow/stream/189985-beginner-help
https://ponylang.zulipchat.com/#narrow/stream/189985-beginner-help
https://ponylang.zulipchat.com/#narrow/stream/189985-beginner-help
https://github.com/ponylang/ponyc/issues
https://github.com/ponylang/pony-tutorial
https://github.com/ponylang/pony-tutorial/blob/main/CONTRIBUTING.md

Getting Started

This chapter will get you up and running with Pony from installing the compiler to running
your first program.

As you work your way through this tutorial, you’ll likely come across a lot of concepts that are
familiar to you from any prior programming languages that you’ve had experience with. You’ll
likely want to skim and skip around through these areas, and that’s totally fine.

However, if you’ve never used Pony before, we guarantee that you’ll come across concepts that
are new to you, which will require close and careful attention if you want to learn and apply
them: reference capabilities. These are the core innovation in Pony that make it a unique and
compelling offering in the wide world of modern programming languages.

In this tutorial we start off with familiar basics, and try our best to avoid reference capabilities
in the code examples until later on when they can be covered in detail. You should feel free to
follow along with the code examples in your own text editor - we absolutely encourage it. Just
be aware that as you venture off the beaten path of the curated tutorial, you’ll likely run into
reference capabilities, and you’ll need to thoroughly read and understand the basics of those
concepts before you’ll really feel fluent and able to work with the compiler as it tries to help
you prove the safety of your program.

Stick with us and read on, even if you need to read through something a few times. Know that
the community is here to help as you climb the learning curve and main new concepts that will
change the way you think about concurrency.

What You Need

To get started, you’ll need a text editor and the ponyc compiler. Or if you are on a not supported
platform or don’t want to install the compiler you can use the Pony’s Playground.
The Pony compiler

Before you get started, please check out the installation instructions for the Pony compiler.

A text editor

While you can write code using any editor, it’s nice to use one with some support for the
language. We maintain a list of editors supporting Pony.

The compiler

Pony is a compiled language, rather than an interpreted one. In fact, it goes even further:
Pony is an ahead-of-time (AOT) compiled language, rather than a just-in-time (JIT) compiled
language.

What this means is that once you build your program, you can run it over and over again
without needing a compiler or a virtual machine or anything else. It’s a complete program, all
on its own.

But it also means you need to build your program before you can run it. In an interpreted
language or a JIT compiled language, you tend to do things like this to run your program:

python helloworld.py

12

/reference-capabilities/index.md
https://github.com/ponylang/ponyc
https://playground.ponylang.io/
https://github.com/ponylang/ponyc/blob/main/INSTALL.md
https://github.com/ponylang/ponyc/blob/main/EDITORS.md

Or maybe you put a shebang in your program (like #! /usr/bin/env python), then chmod to
set the executable bit, and then do:

./helloworld.py

When you use Pony, you don’t do any of that!

Compiling your program
If you are in the same directory as your program, you can just do:
ponyc

That tells the Pony compiler that your current working directory contains your source code, and
to please compile it. If your source code is in some other directory, you can tell ponyc where it
is:

ponyc path/to/my/code

There are other options as well, but we’ll cover those later.

Hello World — Your First Pony Program

Now that you’ve successfully installed the Pony compiler, let’s start programming! Our first
program will be a very traditional one. We'’re going to print “Hello, world!”. First, create a
directory called helloworld:

mkdir helloworld
cd helloworld

Does the name of the directory matter? Yes, it does. It’s the name of your program!
By default when your program is compiled, the resulting executable binary will have the same
name as the directory your program lives in. You can also set the name using the —bin-name
or -b options on the command line.

The code

Then, create a file in that directory called main.pony.

Does the name of the file matter? Not to the compiler, no. Pony doesn’t care about
filenames other than that they end in .pony. But it might matter to you! By giving files good
names, it can be easier to find the code you’re looking for later.

In your file, put the following code:

actor Main
new create(env: Env) =>
env.out.print("Hello, world!")

hello-world-main.pony

Compiling the program
Now compile it:

$ ponyc
Building .
Building builtin

13

Generating

Optimising

Writing ./helloworld.o
Linking ./helloworld

(If you're using Docker, you’d write something like $ docker run -v Some_Absolute_Path/helloworld:/src
ponylang/ponyc, depending of course on what the absolute path to your helloworld directory
is.)

Look at that! It built the current directory, ., plus the stuff that is built into Pony, builtin,
it generated some code, optimised it, created an object file (don’t worry if you don’t know
what that is), and linked it into an executable with whatever libraries were needed. If you're a
C/C++ programmer, that will all make sense to you, otherwise, it probably won’t, but that’s
ok, you can ignore it.

Wait, it linked too? Yes. You won’t need a build system (like make) for Pony. It handles
that for you (including handling the order of dependencies when you link to C libraries, but
we’ll get to that later).

Running the program
Now we can run the program:

$./helloworld
Hello, world!

Congratulations, you’ve written your first Pony program! Next, we’ll explain what some of that
code does.

Hello World — How It Works

Let’s look at our helloworld code again:

actor Main
new create(env: Env) =>
env.out.print("Hello, world!")

hello-world-main.pony

Let’s go through that line by line.

Line 1
actor Main
hello-world-main.pony:1:1

This is a type declaration. The keyword actor means we are going to define an actor, which
is a bit like a class in Python, Java, C#, C++, etc. Pony has classes too, which we’ll see later.

The difference between an actor and a class is that an actor can have asynchronous methods,
called behaviours. We’ll talk more about that later.

A Pony program has to have a Main actor. It’s kind of like the main function in C or C++4, or
the main method in Java, or the Main method in C#. It’s where the action starts.

14

Line 2

new create(env: Env) =>
hello-world-main.pony:2:2

This is a constructor. The keyword new means it’s a function that creates a new instance of
the type. In this case, it creates a new Main.

Unlike other languages, constructors in Pony have names. That means there can be more than
one way to construct an instance of a type. In this case, the name of the constructor is create.

The parameters of a function come next. In this case, our constructor has a single parameter
called env that is of the type Env.

In Pony, the type of something always comes after its name and is separated by a colon. In C,
C++, Java or C#, you might say Env env, but we do it the other way around (like Go, Pascal,
Rust, TypeScript, and a bunch of other languages).

It turns out, our Main actor has to have a constructor called create that takes a single parame-
ter of type Env. That’s how all programs start! So the beginning of your program is essentially
the body of that constructor.

Wait, what’s the body? It’s the code that comes after the =>.

Line 3
env.out.print("Hello, world!")
hello-world-main.pony:3:3

This is your program! What the heck is it doing?

In Pony, a dot is either a field access or a method call, much like other languages. If the name
after the dot has parentheses after it, it’s a method call. Otherwise, it’s a field access.

So here, we start with a reference to env. We then look up the field out on our object env. As
it happens, that field represents stdout, i.e. usually it means printing to your console. Then,
we call the print method on env.out. The stuff inside the parentheses are the arguments to
the function. In this case, we are passing a string literal, i.e. the stuff in double quotes.

In Pony, string literals can be in double quotes, ", in which case they follow C/C++ style
escaping (using stuff like \n), or they can be triple-quoted, """ like in Python, in which case
they are considered raw data.

What’s an Env, anyway? It’s the “environment” your program was invoked with. That means
it has command line arguments, environment variables, stdin, stdout, and stderr. Pony has
no global variables, so these things are explicitly passed to your program.

That’s it!

Really, that’s it. The program begins by creating a Main actor, and in the constructor, we print
“Hello, world!” to stdout. Next, we’ll start diving into the Pony type system.

Types

Pony’s type system is what makes it special. There’s plenty to love about it otherwise but, in
the end, it’s the type system that contains much of what makes Pony novel. In this chapter,
we are going to explore the basics of the type system. If you worked with a statically typed

15

language before, there shouldn’t be anything surprising to you. By the time you’ve finished this
chapter, you should have a handle on basics of the Pony type system.

The Pony Type System at a Glance

Pony is a statically typed language, like Java, C#, C++, and many others. This means the
compiler knows the type of everything in your program. This is different from dynamically typed
languages, such as Python, Lua, JavaScript, and Ruby.

Static vs Dynamic: What’s the difference?
In both kinds of language, your data has a type. So what’s the difference?

With a dynamically typed language, a variable can point to objects of different types at different
times. This is flexible, because if you have a variable x, you can assign an integer to it, then
assign a string to it, and your compiler or interpreter doesn’t complain.

But what if I try to do a string operation on x after assigning an integer to it?
Generally speaking, your program will raise an error. You might be able to handle the error in
some way, depending on the language, but if you don’t, your program will crash.

When you use a statically typed language, a variable has a type. That is, it can only point to
objects of a certain type (although in Pony, a type can actually be a collection of types, as we’ll
see later). If you have an x that expects to point to an integer, you can’t assign a string to it.
Your compiler complains, and it complains before you ever try to run your program.

Types are guarantees

When the compiler knows what types things are, it can make sure some things in your program
work without you having to run it or test it. These things are the guarantees that a language’s
type system provides.

The more powerful a type system is, the more things it can prove about your program without
having to run it.

Do dynamic types make guarantees too? Yes, but they do it at runtime. For example, if
you call a method that doesn’t exist, you will usually get some kind of exception. But you’ll
only find out when you try to run your program.

What guarantees does Pony’s type system give me?
The Pony type system offers a lot of guarantees, even more than other statically typed languages.

e If your program compiles, it won’t crash.

e There will never be an unhandled exception.

o There’s no such thing as null, so your program will never try to dereference null.
e There will never be a data race.

e Your program will never deadlock.

e Your code will always be capabilities-secure.

o All message passing is causal. (Not casual!)

Some of those will make sense right now. Some of them may not mean much to you yet (like
capabilities-security and causal messaging), but we’ll get to those concepts later on.

If T use Pony’s FFI to call code written in another language, does Pony make the
same guarantees for the code I call? Sadly, no. Pony’s type system can only guarantee

16

https://web.archive.org/web/20221206095540/https://courses.cs.vt.edu/~cs5204/fall00/causal.html

code written in Pony. Code written in other languages get only the guarantees provided by that
language.

Pony requires FFI parameters to be explicitly declared as Pony types in advance. The type
system provides a guarantee at compile-time that no code-paths exist that violate the definitions
you provided on the Pony side of your FFT call.

This guarantee cannot be inclusive of foreign code as the compiler has no way to verify that it
won’t violate Pony’s type system guarantees at runtime.

Classes

Just like other object-oriented languages, Pony has classes. A class is declared with the keyword
class, and it has to have a name that starts with a capital letter, like this:

class Wombat
classes-wombat.pony:9:9

Do all types start with a capital letter? Yes! And nothing else starts with a capital letter.
So when you see a name in Pony code, you will instantly know whether it’s a type or not.

What goes in a class?

A class is composed of:

1. Fields.
2. Constructors.
3. Functions.

Fields

These are just like fields in C structures or fields in classes in C++, C#, Java, Python, Ruby,
or basically any language, really. There are three kinds of fields: var, let, and embed fields. A
var field can be assigned to over and over again, but a let field is assigned to in the constructor
and never again. Embed fields will be covered in more detail in the documentation on variables.

class Wombat
let name: String
var _hunger_level: U64

classes-wombat.pony:9:11

Here, a Wombat has a name, which is a String, and a _hunger_level, which is a U64 (an
unsigned 64-bit integer).

What does the leading underscore mean? It means something is private. A private field
can only be accessed by code in the same type. A private constructor, function, or behaviour
can only be accessed by code in the same package. We’ll talk more about packages later.

Constructors

Pony constructors have names. Other than that, they are just like constructors in other lan-
guages. They can have parameters, and they always return a new instance of the type. Since
they have names, you can have more than one constructor for a type.

Constructors are introduced with the new keyword.

17

/expressions/variables.md

class Wombat
let name: String
var _hunger_level: U64

new create(name': String) =>
name = name'
_hunger_level

0

new hungry(name': String, hunger': U64) =>
name = name'
_hunger_level

hunger'
classes-wombat-constructors.pony:8:18

Here, we have two constructors, one that creates a Wombat that isn’t hungry, and another
that creates a Wombat that might be hungry or might not. Unlike some other languages that
differentiate between constructors with method overloading, Pony won’t presume to know which
alternate constructor to invoke based on the arity and type of your arguments. To choose a
constructor, invoke it like a method with the . syntax:

let defaultWombat = Wombat("Fantastibat") // Invokes the create method by default
let hungryWombat = Wombat.hungry("Nomsbat", 12) // Invokes the hungry method

classes-wombat.pony:3:4

What’s with the single quote thing, i.e. name’? You can use single quotes in parameter
and local variable names. In mathematics, it’s called a prime, and it’s used to say “another one
of these, but not the same one”. Basically, it’s just convenient.

Every constructor has to set every field in an object. If it doesn’t, the compiler will give you an
error. Since there is no null in Pony, we can’t do what Java, C# and many other languages
do and just assign either null or zero to every field before the constructor runs, and since we
don’t want random crashes, we don’t leave fields undefined (unlike C or C++).

Sometimes it’s convenient to set a field the same way for all constructors.

class Wombat
let name: String
var _hunger_level: U64
var _thirst_level: U64 = 1

new create(name': String) =>
name = name'

_hunger_level 0]

new hungry(name': String, hunger': U64) =>
name = name'
_hunger_level

hunger'
classes-wombat.pony:9:20

Here, every Wombat begins a little bit thirsty, regardless of which constructor is called.

Zero Argument Constructors

class Hawk
var _hunger_level: U64 = 0O

18

class 0wl
var _hunger_level: U64

new create() =>
_hunger_level = 42

classes-zero-argument-constructors.pony:9:16

Here we have two classes, because the Hawk class defines no constructors, a default constructor
with zero arguments called create is generated. The Owl defines its own constructor that sets
the _hunger_level.

When constructing instances of classes that have zero-argument constructors, they can be con-
structed with just the class name:

class Forest
let _owl: Owl = Owl
let _hawk: Hawk = Hawk

classes-zero-argument-constructors.pony:5:7

This is explained later, in more detail in the sugar section.

Functions

Functions in Pony are like methods in Java, C#, C++, Ruby, Python, or pretty much any
other object oriented language. They are introduced with the keyword fun. They can have
parameters like constructors do, and they can also have a result type (if no result type is given,
it defaults to None).

class Wombat
let name: String
var _hunger_level: U64
var _thirst_level: U64 = 1

new create(name': String) =>
name = name'

_hunger_level 0

new hungry(name': String, hunger': U64) =>
name = name'
_hunger_level

hunger'
fun hunger(): U64 => _hunger_level

fun ref set_hunger(to: U64 = 0): U64 => _hunger_level = to
classes-wombat.pony:9:24

The first function, hunger, is pretty straight forward. It has a result type of U64, and it returns
_hunger_level, which is a U64. The only thing a bit different here is that no return keyword is
used. This is because the result of a function is the result of the last expression in the function,
in this case, the value of _hunger_level

Is there a return keyword in Pony? Yes. It’s used to return “early” from a function, i.e. to
return something right away and not keep running until the last expression.

19

/expressions/sugar.md

The second function, set_hunger, introduces a bunch of new concepts all at once. Let’s go
through them one by one.

e The ref keyword right after fun

This is a reference capability. In this case, it means the receiver, i.e. the object on which the
set_hunger function is being called, has to be a ref type. A ref type is a reference type,
meaning that the object is mutable. We need this because we are writing a new value to the
_hunger_level field.

What’s the receiver reference capability of the hunger method? The default receiver
reference capability if none is specified is box, which means “I need to be able to read from this,
but I won’t write to it”.

What would happen if we left the ref keyword off the set_hunger method? The
compiler would give you an error. It would see you were trying to modify a field and complain
about it.

e The = 0 after the parameter to

This is a default argument. It means that if you don’t include that argument at the call site,
you will get the default argument. In this case, to will be zero if you don’t specify it.

e What does the function return?
It returns the old value of _hunger_level.

Wait, seriously? The old value? Yes. In Pony, assignment is an expression rather than
a statement. That means it has a result. This is true of a lot of languages, but they tend to
return the new value. In other words, given a = b, in most languages, the value of that is the
value of b. But in Pony, the value of that is the old value of a.

..why? It’s called a “destructive read”, and it lets you do awesome things with a capabilities-
secure type system. We’ll talk about that later. For now, we’ll just mention that you can also
use it to implement a swap operation. In most languages, to swap the values of a and b you
need to do something like:

var temp = a
a=>b
b = temp

classes-swap-values.pony:6:8
In Pony, you can just do:
a=>b=a

classes-swap-values-sugar.pony:6:6

Finalisers

Finalisers are special functions. They are named _final, take no parameters and have a receiver
reference capability of box. In other words, the definition of a finaliser must be fun _final().

The finaliser of an object is called before the object is collected by the GC. Functions may still
be called on an object after its finalisation, but only from within another finaliser. Messages
cannot be sent from within a finaliser.

Finalisers are usually used to clean up resources allocated in C code, like file handles, network
sockets, etc.

20

What about inheritance?

In some object-oriented languages, a type can inherit from another type, like how in Java
something can extend something else. Pony doesn’t do that. Instead, Pony prefers composition
to inheritance. In other words, instead of getting code reuse by saying something is something
else, you get it by saying something has something else.

On the other hand, Pony has a powerful trait system (similar to Java 8 interfaces that can have
default implementations) and a powerful interface system (similar to Go interfaces, i.e. struc-
turally typed).

We'll talk about all that stuff in detail later.

Naming rules

All names in Pony, such as type names, method names, and variable names may contain only
ASCII characters.

In fact all elements of Pony code are required to be ASCII, except string literals, which happily
accept any kind of bytes directly from the source file, be it UTF-8 encoded or IS0-8859-2 and
represent them in their encoded form.

A Pony type, whether it’s a class, actor, trait, interface, primitive, or type alias, must start with
an uppercase letter. After an underscore for private or special methods (behaviors, constructors,
and functions), any method or variable, including parameters and fields, must start with a
lowercase letter. In all cases underscores in a row or at the end of a name are not allowed, but
otherwise, any combination of letters and numbers is legal.

In fact, numbers may use single underscores inside as a separator too!

Only variable names can end in primes (').

Primitives
A primitive is similar to a class, but there are two critical differences:

1. A primitive has no fields.
2. There is only one instance of a user-defined primitive.

Having no fields means primitives are never mutable. Having a single instance means that if
your code calls a constructor on a primitive type, it always gets the same result back (except
for built-in “machine word” primitives, covered below).

What can you use a primitive for?
There are three main uses of primitives (four, if you count built-in “machine word” primitives).

1. As a “marker value”. For example, Pony often uses the primitive None to indicate that
something has “no value”. Of course, it does have a value, so that you can check what it
is, and the value is the single instance of None.

2. As an “enumeration” type. By having a union of primitive types, you can have a
type-safe enumeration. We’ll cover union types later.

3. As a “collection of functions”. Since primitives can have functions, you can group functions
together in a primitive type. You can see this in the standard library, where path handling
functions are grouped in the primitive Path, for example.

21

https://en.wikipedia.org/wiki/ASCII

// 2 "marker values"
primitive OpenedDoor
primitive ClosedDoor

// An "enumeration" type
type DoorState is (OpenedDoor | ClosedDoor)

// A collection of functions
primitive BasicMath
fun add(a: U64, b: U64): U4 =>
a+b

fun multiply(a: U64, b: U64): U64 =>
a*xb

actor Main
new create(env: Env) =>
let doorState : DoorState = ClosedDoor
let isDoor(Open : Bool = match doorState
| OpenedDoor => true
| ClosedDoor => false

end
env.out.print("Is door open? " + isDoorOpen.string())
env.out.print("2 + 3 = " + BasicMath.add(2,3).string())

primitives-doors.pony

Primitives are quite powerful, particularly as enumerations. Unlike enumerations in other lan-
guages, each “value” in the enumeration is a complete type, which makes attaching data and
functionality to enumeration values easy.

Built-in primitive types

The primitive keyword is also used to introduce certain built-in “machine word” types. Other
than having a value associated with them, these work like user-defined primitives. These are:

e Bool. This is a 1-bit value that is either true or false.

e ISize, ILong, I8, 116, 132, 164, I1128. Signed integers of various widths.

e USize, ULong, U8, U16, U32, U64, U128. Unsigned integers of various widths.
e F32 F64. Floating point numbers of various widths.

ISize/USize correspond to the bit width of the native type size_t, which varies by platform.
ILong/ULong similarly correspond to the bit width of the native type long, which also varies by
platform. The bit width of a native int is the same across all the platforms that Pony supports,
and you can use I32/U32 for this.

Primitive initialisation and finalisation

Primitives can have two special functions, _init and _final. _init is called before any actor
starts. _final is called after all actors have terminated. The two functions take no parameter.
The _init and _final functions for different primitives always run sequentially.

A common use case for this is initialising and cleaning up C libraries without risking untimely
use by an actor.

22

Actors

An actor is similar to a class, but with one critical difference: an actor can have behaviours.

Behaviours

A behaviour is like a function, except that functions are synchronous and behaviours are
asynchronous. In other words, when you call a function, the body of the function is executed
immediately, and the result of the call is the result of the body of the function. This is just like
method invocation in any other object-oriented language.

But when you call a behaviour, the body is not executed immediately. Instead, the body of
the behaviour will execute at some indeterminate time in the future.

A behaviour looks like a function, but instead of being introduced with the keyword fun, it is
introduced with the keyword be.

Like a function, a behaviour can have parameters. Unlike a function, it doesn’t have a receiver
capability (a behaviour can be called on a receiver of any capability) and you can’t specify a
return type.

So what does a behaviour return? Behaviours always return None, like a function without
explicit result type, because they can’t return something they calculate (since they haven’t run

yet).

actor Aardvark
let name: String
var _hunger_level: U64 = 0

new create(name': String) =>
name = name'

be eat(amount: U64) =>
_hunger_level = _hunger_level - amount.min(_hunger_level)
actors-behaviors.pony

Here we have an Aardvark that can eat asynchronously. Clever Aardvark.

Message Passing

If you are familiar with actor-based languages like Erlang, you are familiar with the concept
of “message passing”. It’s how actors communicate with one another. Behaviours are the Pony
equivalent. When you call a behavior on an actor, you are sending it a message.

If you aren’t familiar with message passing, don’t worry about it. We’ve got you covered. All
will be explained below.

Concurrent

Since behaviours are asynchronous, it’s ok to run the body of a bunch of behaviours at the same
time. This is exactly what Pony does. The Pony runtime has its own cooperative scheduler,
which by default has a number of threads equal to the number of CPU cores on your machine.
Each scheduler thread can be executing an actor behaviour at any given time, so Pony programs
are naturally concurrent.

23

Sequential

Actors themselves, however, are sequential. That is, each actor will only execute one behaviour
at a time. This means all the code in an actor can be written without caring about concurrency:
no need for locks or semaphores or anything like that.

When you’re writing Pony code, it’s nice to think of actors not as a unit of parallelism, but
as a unit of sequentiality. That is, an actor should do only what has to be done sequentially.
Anything else can be broken out into another actor, making it automatically parallel.

In the example below, the Main actor calls a behaviour call_me_later which, as we know,
is asynchronous, so we won’t wait for it to run before continuing. Then, we run the method
env.out.print, which is also asynchronous, and will print the provided text to the terminal.
Now that we’ve finished executing code inside the Main actor, the behaviour we’ve called earlier
will eventually run, and it will print the last text.

actor Main
new create(env: Env) =>
call_me_later(env)
env.out.print("This is printed first")

be call_me_later(env: Env) =>
env.out.print("This is printed last")
actors-sequential.pony

Since all this code runs inside the same actor, and the calls to the other behaviour
env.out.print are sequential as well, we are guaranteed that "This is printed first" is
always printed before "This is printed last".

Why is this safe?

Because of Pony’s capabilities secure type system. We’ve mentioned reference capabilities
briefly before when talking about function receiver reference capabilities. The short version is
that they are annotations on a type that make all this parallelism safe without any runtime
overhead.

We will cover reference capabilities in depth later.

Actors are cheap

If you’ve done concurrent programming before, you’ll know that threads can be expensive.
Context switches can cause problems, each thread needs a stack (which can be a lot of memory),
and you need lots of locks and other mechanisms to write thread-safe code.

But actors are cheap. Really cheap. The extra cost of an actor, as opposed to an object, is about
256 bytes of memory. Bytes, not kilobytes! And there are no locks and no context switches. An
actor that isn’t executing consumes no resources other than the few extra bytes of memory.

It’s pretty normal to write a Pony program that uses hundreds of thousands of actors.

Actor finalisers

Like classes, actors can have finalisers. The finaliser definition is the same (fun _final()). All
guarantees and restrictions for a class finaliser are also valid for an actor finaliser. In addition,
an actor will not receive any further message after its finaliser is called.

24

Traits and Interfaces

Like other object-oriented languages, Pony has subtyping. That is, some types serve as cate-
gories that other types can be members of.

There are two kinds of subtyping in programming languages: nominal and structural.
They’re subtly different, and most programming languages only have one or the other. Pony
has both!

Nominal subtyping
This kind of subtyping is called nominal because it is all about names.

If you’ve done object-oriented programming before, you may have seen a lot of discussion about
single inheritance, multiple inheritance, mixins, traits, and similar concepts. These are all
examples of nominal subtyping.

The core idea is that you have a type that declares it has a relationship to some category type.
In Java, for example, a class (a concrete type) can implement an interface (a category type).
In Java, this means the class is now in the category that the interface represents. The compiler
will check that the class actually provides everything it needs to.

In Pony, nominal subtyping is done via the keyword is. is declares at the point of declaration
that an object has a relationship to a category type. For example, to use nominal subtyping to
declare that the class Name provides Stringable, you'd do:

class Name is Stringable

traits-and-interfaces-nominal-subtyping.pony

Structural subtyping

There’s another kind of subtyping, where the name doesn’t matter. It’s called structural
subtyping, which means that it’s all about how a type is built, and nothing to do with names.

A concrete type is a member of a structural category if it happens to have all the needed
elements, no matter what it happens to be called.

Structural typing is very similar to duck typing from dynamic programming languages, except
that type compatibility is determined at compile time rather than at run time. If you've used
Go, you’ll recognise that Go interfaces are structural types.

You do not declare structural relationships ahead of time, instead it is done by checking if a given
concrete type can fulfill the required interface. For example, in the code below, we have the
interface Stringable from the standard library. Anything can be used as a Stringable so long
as it provides the method fun string(): String iso”. In our example below, ExecveError
provides the Stringable interface and can be used anywhere a Stringable is needed. Be-
cause Stringable is a structural type, ExecveError doesn’t have to declare a relationship to
Stringable, it simply has that relationship because it has “the same shape”.

interface box Stringable

nnn

Things that can be turned into a String.
nmnn

fun string(): String iso”
nun

Generate a string representation of this object.

25

https://en.wikipedia.org/wiki/Duck_typing

primitive ExecveError
fun string(): String iso” => "ExecveError".clone()

traits-and-interfaces-structural-subtyping.pony

Nominal and structural subtyping in Pony

When discussing subtyping in Pony, it is common to say that trait is nominal subtyping and
interface is structural subtyping, however, that isn’t really true.

Both trait and interface can establish a relationship via nominal subtyping. Only interface
can be used for structural subtyping.

Nominal subtyping in Pony

The primary means of doing nominal subtyping in Pony is using traits. A trait looks a bit like
a class, but it uses the keyword trait and it can’t have any fields.

trait Named
fun name(): String => "Bob"
class Bob is Named
traits-and-interfaces-trait.pony:6:9

Here, we have a trait Named that has a single function name that returns a String. It also
provides a default implementation of name that returns the string literal “Bob”.

We also have a class Bob that says it is Named. This means Bob is in the Named category. In
Pony, we say Bob provides Named, or sometimes simply Bob is Named.

Since Bob doesn’t have its own name function, it uses the one from the trait. If the trait’s
function didn’t have a default implementation, the compiler would complain that Bob had no
implementation of name.

trait Named

fun name(): String => "Bob"

trait Bald
fun hair(): Bool => false

class Bob is (Named & Bald)
traits-and-interfaces-multiple-traits.pony:6:12

It is possible for a class to have relationships with multiple categories. In the above example,
the class Bob provides both Named and Bald.

trait Named
fun name(): String => "Bob"

trait Bald is Named
fun hair(): Bool => false

class Bob is Bald

26

traits-and-interfaces-nested-traits.pony:6:12

It is also possible to combine categories together. In the example above, all Bald classes are
automatically Named. Consequently, the Bob class has access to both hair() and name() default
implementation of their respective trait. One can think of the Bald category to be more specific
than the Named one.

class Larry
fun name(): String => "Larry"

traits-and-interfaces-nominal-subtyping-in-pony.pony:6:7

Here, we have a class Larry that has a name function with the same signature. But Larry does
not provide Named!

Wait, why not? Because Larry doesn’t say it is Named. Remember, traits are nominal: a
type that wants to provide a trait has to explicitly declare that it does. And Larry doesn’t.

You can also do nominal subtyping using the keyword interface. Interfaces in Pony are
primarily used for structural subtyping. Like traits, interfaces can also have default method
implementations, but in order to use default method implementations, an interface must be
used in a nominal fashion. For example:

interface HasName
fun name(): String => "Bob"
class Bob is HasName
class Larry
fun name(): String => "Larry"
traits-and-interfaces-nominal-and-structural-subtyping.pony:8:14

Both Bob and Larry are in the category HasName. Bob because it has declared that it is a
HasName and Larry because it is structurally a HasName.

Structural subtyping in Pony

Pony has structural subtyping using interfaces. Interfaces look like traits, but they use the
keyword interface.

interface HasName
fun name(): String

traits-and-interfaces-structural-subtyping-in-pony.pony

Here, HasName looks a lot like Named, except it’s an interface instead of a trait. This means
both Bob and Larry provide HasName! The programmers that wrote Bob and Larry don’t even
have to be aware that HasName exists.

Differences between traits and interfaces

It is common for new Pony users to ask, Should I use traits or interfaces in my own
code? Both! Interfaces are more flexible, so if you're not sure what you want, use an interface.
But traits are a powerful tool as well.

27

Private methods

A key difference between traits and interfaces is that interfaces can’t have private methods.
So, if you need private methods, you'll need to use a trait and have users opt in via nominal
typing. Interfaces can’t have private methods because otherwise, users could use them to break
encapsulation and access private methods on concrete types from other packages. For example:

actor Main
new create(env: Env) =>
let x: String ref = "sailor".string()
let y: Foo = x
y._set(0, 'f')
env.out.print("Hello, " + x)

interface Foo
fun ref _set(i: USize, value: U8): U8
traits-and-interfaces-private-methods.pony

In the code above, the interface Foo allows access to the private _set method of String and
allows for changing sailor to failor or it would anyway, if interfaces were allowed to have
private methods.

Open world enumerations

Traits allow you to create “open world enumerations” that others can participate in. For exam-
ple:

trait Color

primitive Red is Color

primitive Blue is Color
traits-and-interfaces-open-world-enumerations.pony

Here we are using a trait to provide a category of things, Color, that any other types can opt
into by declaring itself to be a Color. This creates an “open world” of enumerations that you
can’t do using the more traditional Pony approach using type unions.

primitive Red

primitive Blue

type Color is (Red | Blue)
traits-and-interfaces-type-union.pony

In our trait based example, we can add new colors at any time. With the type union based
approach, we can only add them by modifying definition of Color in the package that provides
it.

Interfaces can’t be used for open world enumerations. If we defined Color as an interface:
interface Color
traits-and-interfaces-marker-methods.pony:1:1

Then literally everything in Pony would be a Color because everything matches the Color
interface. You can however, do something similar using “marker methods” with an interface:

28

interface Color
fun is_color(): None

primitive Red
fun is_color(): None => Nomne

traits-and-interfaces-marker-methods.pony

Here we are using structural typing to create a collection of things that are in the category
Color by providing a method that “marks” being a member of the category: is_color.

Open world typing

We’ve covered a couple ways that traits can be better than interfaces, let’s close with the
reason for why we say, unless you have a reason to, you should use interface instead of trait.
Interfaces are incredibly flexible. Because traits only provide nominal typing, a concrete type
can only be in a category if it was declared as such by the programmer who wrote the concrete
type. Interfaces allow you to create your own categorizations on the fly, as you need them, to
group existing concrete types together however you need to.

Here’s a contrived example:

interface Compactable
fun ref compact()
fun size(): USize

class Compactor
nnn

Compacts data structures when their size crosses a threshold
nnn

let _threshold: USize

new create(threshold: USize) =>
_threshold = threshold

fun ref try_compacting(thing: Compactable) =>
if thing.size() > _threshold then
thing.compact ()
end

traits-and-interfaces-open-world-typing.pony:20:36

The flexibility of interface has allowed us to define a type Compactable that we can use to
allow our Compactor to accept a variety of data types including Array, Map, and String from
the standard library.

Structs

A struct is similar to a class. There’s a couple very important differences. You’ll use classes
throughout your Pony code. You'll rarely use structs. We’ll discuss structs in more depth in
the C-FFI chapter of the tutorial. In the meantime, here’s a short introduction to the basics of
structs.

29

/c-ffi/index.md

Structs are “classes for FFI”

A struct is a class like mechanism used to pass data back and forth with C code via Pony’s
Foreign Function Interface.

Like classes, Pony structs can contain both fields and methods. Unlike classes, Pony structs
have the same binary layout as C structs and can be transparently used in C functions. Structs
do not have a type descriptor, which means they cannot be used in algebraic types or implement
traits/interfaces.

What goes in a struct?

The same as a class! A struct is composed of some combination of:

1. Fields
2. Constructors
3. Functions

Fields

Pony struct fields are defined in the same way as they are for Pony classes, using embed, let,
and var. An embed field is embedded in its parent object, like a C struct inside C struct. A
var/let field is a pointer to an object allocated separately.

For example:

struct Inner
var x: I32 =0

struct Outer
embed inner_embed: Inner = Inner
var inner_var: Inner = Inner

structs-fields.pony

Constructors

Struct constructors, like class constructors, have names. Everything you previously learned
about Pony class constructors applies to struct constructors.

struct Pointer[A]

nnn

A Pointer[A] is a raw memory pointer. It has no descriptor and thus can't be
included in a union or intersection, or be a subtype of any interface. Most

functions on a Pointer[A] are private to maintain memory safety.
nnn

new create() =>
nnn

A null pointer.
nun

compile_intrinsic
new _alloc(len: USize) =>

Space for len instances of A.

30

nnn
compile_intrinsic
structs-constructors.pony

Here we have two constructors. One that creates a new null Pointer, and another creates a
Pointer with space for many instances of the type the Pointer is pointing at. Don’t worry if you
don’t follow everything you are seeing in the above example. The important part is, it should
basically look like the class constructor example we saw earlier.

Functions

Like Pony classes, Pony structs can also have functions. Everything you know about functions
on Pony classes applies to structs as well.

We’ll see structs again

Structs play an important role in Pony’s interactions with code written using C. We’ll see them
again in C-FFI section of the tutorial. We probably won’t see too much about structs until
then.

Type Aliases

A type alias is just a way to give a different name to a type. This may sound a bit silly: after
all, types already have names! However, Pony can express some complicated types, and it can
be convenient to have a short way to talk about them.

We’ll give a couple examples of using type aliases, just to get the feel of them.

Enumerations

One way to use type aliases is to express an enumeration. For example, imagine we want to say
something must either be Red, Blue or Green. We could write something like this:

primitive Red
primitive Blue
primitive Green

type Colour is (Red | Blue | Green)

type-aliases-enumerations.pony

There are two new concepts in there. The first is the type alias, introduced with the keyword
type. It just means that the name that comes after type will be translated by the compiler to
the type that comes after is.

The second new concept is the type that comes after is. It’s not a single type! Instead, it’s a
union type. You can read the | symbol as or in this context, so the type is “Red or Blue or
Green”.

A union type is a form of closed world type. That is, it says every type that can possibly be
a member of it. In contrast, object-oriented subtyping is usually open world, e.g. in Java, an
interface can be implemented by any number of classes.

You can also declare constants like in C or Go like this, making use of apply, which can be
omitted during call (will be discussed further in Sugar),

31

/types/classes.md#what-goes-in-a-class
/c-ffi/index.md
/expressions/sugar.md

primitive Red fun apply(): U32 => OxFFOOOOFF

primitive Green fun apply(): U32 => 0xO0FFOOFF

primitive Blue fun apply(): U32 => 0x0000FFFF

type Colour is (Red | Blue | Green)
type-aliases-enumerations-apply.pony:15:19

or namespace them like this

primitive Colours
fun red(): U32 => O0xFFOOOOFF
fun green(): U32 => 0xOOFFOOFF

type-aliases-enumerations-namespace.pony

You might also want to iterate over the enumeration items like this to print their value for
debugging purposes

Complex types

If a type is complicated, it can be nice to give it a mnemonic name. For example, if we want to
say that a type must implement more than one interface, we could say:

interface HasName

fun name(): String

interface HasAge
fun age(): U32

interface HasFeelings
fun feeling(): String
type Person is (HasName & HasAge & HasFeelings)
type-aliases-complex-types-interface.pony:6:15
This use of complex types applies to traits, not just interfaces:
trait HasName

fun name(): String => "Bob"

trait HasAge
fun age(): U32 => 42

trait HasFeelings
fun feeling(): String => "Great!"
type Person is (HasName & HasAge & HasFeelings)
type-aliases-complex-types-trait.pony:6:15

There’s another new concept here: the type has a & in it. This is similar to the | of a union
type: it means this is an intersection type. That is, it’s something that must be all of HasName,
HasAge and HasFeelings.

But the use of type here is exactly the same as the enumeration example above, it’s just
providing a name for a type that is otherwise a bit tedious to type out over and over.

32

Another example, this time from the standard library, is SetIs. Here’s the actual definition:
type SetIs[A] is HashSet[A, HashIs[A!]]
type-aliases-set-is.pony

Again there’s something new here. After the name SetIs comes the name A in square brackets.
That’s because SetIs is a generic type. That is, you can give a SetIs another type as a
parameter, to make specific kinds of set. If you've used Java or C#, this will be pretty familiar.
If you’ve used C++, the equivalent concept is templates, but they work quite differently.

And again the use of type just provides a more convenient way to refer to the type we’re
aliasing:

HashSet[A, HashIs[A!]]
type-aliases-hash-set.pony

That’s another generic type. It means a SetIs is really a kind of HashSet. Another concept
has snuck in, which is ! types. This is a type that is the alias of another type. That’s tricky
stuff that you only need when writing complex generic types, so we’ll leave it for later.

One more example, again from the standard library, is the Map type that gets used a lot. It’s
actually a type alias. Here’s the real definition of Map:

type Map[K: (Hashable box & Comparable[K] box), V] is HashMap[K, V, HashEq[K]]
type-aliases-map.pony

Unlike our previous example, the first type parameter, K, has a type associated with it. This is
a constraint, which means when you parameterise a Map, the type you pass for K must be a
subtype of the constraint.

Also, notice that box appears in the type. This is a reference capability. It means there is
a certain class of operations we need to be able to do with a K. We’ll cover this in more detail
later.

Just like our other examples, all this really means is that Map is really a kind of HashMap.

Other stuff

Type aliases get used for a lot of things, but this gives you the general idea. Just remember
that a type alias is always a convenience: you could replace every use of the type alias with the
full type after the is.

In fact, that’s exactly what the compiler does.

Type Expressions

The types we’ve talked about so far can also be combined in type expressions. If you’re used
to object-oriented programming, you may not have seen these before, but they are common in
functional programming. A type expression is also called an algebraic data type.

There are three kinds of type expression: tuples, unions, and intersections.

Tuples

A tuple type is a sequence of types. For example, if we wanted something that was a String
followed by a U64, we would write this:

33

var x: (String, U64)
x = ("hi", 3)
x = ("bye”, o)

type-expressions-tuple-declaration.pony

All type expressions are written in parentheses, and the elements of a tuple are separated by a
comma. We can also destructure a tuple using assignment:

(var y, var z) = x
type-expressions-tuple-destructuring.pony
Or we can access the elements of a tuple directly:

var y = x._1
x._2

var z
type-expressions-tuple-direct-access.pony

Note that there’s no way to assign to an element of a tuple. Instead, you can just reassign the
entire tuple, like this:

x = ("wombat", x._2)
type-expressions-tuple-reassignment.pony

Why use a tuple instead of a class? Tuples are a way to express a collection of values
that doesn’t have any associated code or expected behaviour. Basically, if you just need a quick
collection of things, maybe to return more than one value from a function, for example, you
can use a tuple.

Unions

A union type is written like a tuple, but it uses a | (pronounced “or” when reading the type)
instead of a , between its elements. Where a tuple represents a collection of values, a union
represents a single value that can be any of the specified types.

Unions can be used for tons of stuff that require multiple concepts in other languages. For
example, optional values, enumerations, marker values, and more.

var x: (String | Nomne)
type-expressions-union.pony

Here we have an example of using a union to express an optional type, where x might be a
String, but it also might be None.

Intersections

An intersection uses a & (pronounced “and” when reading the type) between its elements. It
represents the exact opposite of a union: it is a single value that is all of the specified types, at
the same time!

This can be very useful for combining traits or interfaces, for example. Here’s something from
the standard library:

type Map[K: (Hashable box & Comparable[K] box), V] is HashMap[K, V, HashEq[K]]

type-expressions-intersection.pony

34

That’s a fairly complex type alias, but let’s look at the constraint of K. It’s (Hashable box &
Comparable[K] box), which means K is Hashable and it is Comparable [K], at the same time.

Combining type expressions

Type expressions can be combined into more complex types. Here’s another example from the
standard library:

var _array: Array[((X, V) | _MapEmpty | _MapDeleted)]
type-expressions-combined.pony

Here we have an array where each element is either a tuple of (K, V) or a _MapEmpty or a
_MapDeleted.

Because every type expression has parentheses around it, they are actually easy to read once
you get the hang of it. However, if you use a complex type expression often, it can be nice to
provide a type alias for it.

type Number is (Signed | Unsigned | Float)
type Signed is (I8 | I16 | I32 | I64 | I128)
type Unsigned is (U8 | U16 | U32 | U64 | U128)

type Float is (F32 | F64)
type-expressions-type-alias.pony
Those are all type aliases used by the standard library.

Is Number a type alias for a type expression that contains other type aliases? Yes!
Fun, and convenient.

Expressions

This chapter covers the various expressions that make up Pony. From variables to control
structures and more.

Literals

What do we want?

Values!

Where do we want them?

In our Pony programs!

Say no more

Every programming language has literals to encode values of certain types, and so does Pony.

In Pony you can express booleans, numeric types, characters, strings and arrays as literals.

Boolean Literals

There is true, there is false. That’s it.

35

Numeric Literals
Numeric literals can be used to encode any signed or unsigned integer or floating point number.

In most cases Pony is able to infer the concrete type of the literal from the context where it is
used (e.g. assignment to a field or local variable or as argument to a method/behaviour call).

It is possible to help the compiler determine the concrete type of the literal using a constructor
of one of the numeric types:

. U8, U16, U32, U4, U128, USize, ULong
o 18,116, I32, 164, 1128, ISize, ILong
« F32, F64

let my_explicit_unsigned: U32 = 42_000
let my_constructor_unsigned = U8(1)
let my_constructor_float = F64(1.234)

literals-numeric-typing.pony
Integer literals can be given as decimal, hexadecimal or binary:

let my_decimal_int: I32 = 1024
let my_hexadecimal_int: I32 = 0x400
let my_binary_int: I32 = 0b10000000000

literals-number-types.pony:3:5
Floating Point literals are expressed as standard floating point or scientific notation:

let my_double_precision_float: F64 = 0.009999999776482582092285156250
let my_scientific_float: F32 = 42.12e-4

literals-floats.pony

Character Literals
Character literals are enclosed with single quotes (').

Character literals, unlike String literals, encode to a single numeric value. Usually this is a
single byte, a U8. But they can be coerced to any integer type:

let big_a: U8 = 'A' // 65
let hex_escaped_big_a: U8 = '\x41' // 65
let newline: U32 = '\n' // 10

literals-character-literals.pony:3:5
The following escape sequences are supported:
o \x4F hex escape sequence with 2 hex digits (up to 0xFF)
e \a, \b, \e, \f, \n, \r, \t, \v, \\, \0, \
Multibyte Character literals

It is possible to have character literals that contain multiple characters. The resulting integer
value is constructed byte by byte with each character representing a single byte in the resulting
integer, the last character being the least significant byte:

let multiByte: U64 = 'ABCD' // 0x41424344

36

literals-multibyte-character-literals.pony

String Literals

String literals are enclosed with double quotes " or triple-quoted """. They can contain any
kind of bytes and various escape sequences:

e \uOOFE Unicode escape sequence with 4 hex digits encoding one code point

e \ulOFFFE Unicode escape sequence with 6 hex digits encoding one code point
o \x4F hex escape sequence for Unicode letters with 2 hex digits (up to 0xFF)

e \a, \b, \e, \f, \n, \r, \t, \v, \\, \0, \"

Each escape sequence encodes a full character, not byte.
use "format"

actor Main
new create(env: Env) =>

let pony = " "
let pony_hex_escaped = "p\xF6n\xFF"
let pony_unicode_escape = "\UO1F40E"

env.out.print(pony + " " + pony_hex_escaped + " " + pony_unicode_escape)
for b in pony.values() do

env.out.print(Format.int [U8] (b, FormatHex))
end

literals-string-literals.pony
All string literals support multi-line strings:

let stacked_ponies = "

literals-multi-line-string-literals.pony

String Literals and Encodings

String Literals contain the bytes that were read from their source code file. Their actual value
thus depends on the encoding of their source.

Consider the following example:
let u_umlaut = "i"
literals-string-literals-encoding.pony:3:3
If the file containing this code is encoded as UTF-8 the byte-value of u_umlaut will be: \xc3\xbc.
If the file is encoded with 1SO-8559-1 (Latin-1) its value will be \xfc.
Triple quoted Strings

For embedding multi-line text in string literals, there are triple quoted strings.

37

let triple_quoted_string_docs =
nmnn
Triple quoted strings are the way to go for long multi-line text.
They are extensively used as docstrings which are turned into api documentation.

They get some special treatment, in order to keep Pony code readable:

* The string literal starts on the line after the opening triple quote.
* Common indentation is removed from the string literal
so it can be conveniently aligned with the enclosing indentation
e.g. each line of this literal will get its first two whitespaces removed
* Whitespace after the opening and before the closing triple quote will be
removed as well. The first line will be completely removed if it only

contains whitespace. e.g. this strings first character is T not “\n~.
nnn

literals-triple-quoted-string-literals.pony

String Literal Instances

When a single string literal is used several times in your Pony program, all of them will be
converted to a single common instance. This means they will always be equal based on identity.

Array Literals

Array literals are enclosed by square brackets. Array literal elements can be any kind of expres-
sions. They are separated by semicolon or newline:

let my_literal_array =

[
"first"; "second"
"third one on a new line"

]

literals-array-literals.pony:3:7

Type inference

If the type of the array is not specified, the resulting type of the literal array expression is
Array[T] ref where T (the type of the elements) is inferred as the union of all the element

types:

let my_heterogenous_array =
L
U64 (42)
ngom
U64.min_value()
]

literals-type-inference-union.pony

In the above example the resulting array type will be Array[(U64|String)] ref because the
array contains String and U64 elements.

If the variable or call argument the array literal is assigned to has a type, the literal is coerced
to that type:

38

let my_stringable_array: Array[Stringable] ref =

[
U64 (0xA)
n OXA"

literals-type-inference-coercion.pony

Here my_stringable_array is coerced to Array[Stringable] ref. This works because
Stringable is a trait that both String and U64 implement.

It is also possible to return an array with a different Reference Capability than ref just by
specifying it on the type:

let my_immutable_array: Array[Stringable] val =

C
U64 (OxBEEF)
"OxBEEF"

literals-type-inference-reference-capabilities.pony

This way array literals can be used for creating arrays of any Reference Capability.

As Expression

It is also possible to give the literal a hint on what kind of type it should coerce the array
elements to using an as Expression. The expression with the desired array element type needs
to be added right after the opening square bracket, delimited by a colon:

let my_as_array =
[as Stringable:
U64 (OxFFEF)
"OxFFEF"
U64(1 + 1)

literals-as-expression.pony
This array literal is coerced to be an Array[Stringable] ref according to the as expression.

If a type is specified on the left-hand side, it needs to exactly match the type in the as expression.

Arrays and References

Constructing an array with a literal creates new references to its elements. Thus, to be 100%
technically correct, array literal elements are inferred to be the alias of the actual element type.
If all elements are of type T the array literal will be inferred as Array[T!] ref that is as an
array of aliases of the type T.

It is thus necessary to use elements that can have more than one reference of the same type
(e.g. types with val or ref capability) or use ephemeral types for other capabilities (as returned
from constructors or the consume expression).

39

/reference-capabilities/index.md
/reference-capabilities/index.md
/types/classes.md#constructors
/reference-capabilities/consume-and-destructive-read.md

Variables

Like most other programming languages Pony allows you to store data in variables. There are
a few different kinds of variables which have different lifetimes and are used for slightly different
purposes.

Local variables

Local variables in Pony work very much as they do in other languages, allowing you to store
temporary values while you perform calculations. Local variables live within a chunk of code
(they are local to that chunk) and are created every time that code chunk executes and disposed
of when it completes.

To define a local variable the var keyword is used (let can also be used, but we’ll get to that
later). Right after the var comes the variable’s name, and then you can (optionally) put a :
followed by the variable’s type. For example:

var x: String = "Hello"
variables-local-variables.pony:1:1
Here, we'’re assigning the string literal "Hello" to x.

You don’t have to give a value to the variable when you define it: you can assign one later if
you prefer. If you try to read the value from a variable before you’ve assigned one, the compiler
will complain instead of allowing the dreaded wuninitialised variable bug.

Every variable has a type, but you don’t have to specify it in the declaration if you provide an
initial value. The compiler will automatically use the type of the initial value of the variable.

The following definitions of x, y and z are all effectively identical.

var x: String = "Hello"
var y = "Hello"

var z: String
z = "Hello"

variables-local-variables.pony

Can I miss out both the type and initial value for a variable? No. The compiler will
complain that it can’t figure out a type for that variable.

All local variable names start with a lowercase letter. If you want to you can end them with a
prime ' (or more than one) which is useful when you need a second variable with almost the
same meaning as the first. For example, you might have one variable called time and another
called time'.

The chunk of code that a variable lives in is known as its scope. Exactly what its scope is
depends on where it is defined. For example, the scope of a variable defined within the then
expression of an if statement is that then expression. We haven’t looked at if statements yet,
but they’re very similar to every other language.

if a > b then

var x = "a is bigger"
env.out.print(x) // OK
end

40

env.out.print(x) // Illegal
variables-scope.pony:6:11

Variables only exist from when they are defined until the end of the current scope. For our
variable x this is the end at the end of the then expression: after that, it cannot be used.

Var vs. let

Local variables are declared with either a var or a let. Using var means the variable can be
assigned and reassigned as many times as you like. Using let means the variable can only be
assigned once.

var x: U32 = 3

let y: U32 = 4

x =5 // OK

y = 6 // Error, y is let
variables-var-vs-let.pony:3:6

Using let instead of var also means the variable has to be assigned immediately.

let x: U32 = 3 // Ok
let y: U32 // Error, can't declare a let local without assigning to it
y = 6 // Error, can't reassign to a let local

variables-let-reassignment.pony:3:5

Note that a variable having been declared with let only restricts reassignment, and does not
influence the mutability of the object it references. This is the job of reference capabilities,
explained later in this tutorial.

You never have to declare variables as 1let, but if you know you’re never going to change what
a variable references then using let is a good way to catch errors. It can also serve as a useful
comment, indicating what is referenced is not meant to be changed.

Fields

In Pony, fields are variables that live within objects. They work like fields in other object-
oriented languages.

Fields have the same lifetime as the object they're in, rather than being scoped. They are set
up by the object constructor and disposed of along with the object.

If the name of a field starts with _, it’s private. That means only the type the field is in can
have code that reads or writes that field. Otherwise, the field is public and can be read or
written from anywhere.

Just like local variables, fields can be var or 1let. Nevertheless, rules for field assignment differ
a bit from variable assignment. No matter the type of the field (either var or let), either:

1. an initial value has to be assigned in their definition or
2. an initial value has to be assigned in the constructor method.

In the example below, the initial value of the two fields of the class Wombat is assigned at the
definition level:

41

class Wombat
let name: String = "Fantastibat"
var _hunger_level: U32 = 0

variables-fields-definition-assignment.pony:6:8

Alternatively, these fields could be assigned in the constructor method:

class Wombat
let name: String
var _hunger_level: U32

new create(hunger: U32) =>
name = "Fantastibat"
_hunger_level = hunger

variables-fields-constructor-assignment.pony:6:12

If the assignment is not done at the definition level or in the constructor, an error is raised by
the compiler. This is true for both var and let fields.

Please note that the assignment of a value to a field has to be explicit. The below example
raises an error when compiled, even when the field is of var type:

class Wombat
let name: String
var _hunger_level: U64

new ref create(name': String, level: U64) =>
name = name'
set_hunger_level(level)
// Error: field _hunger_level left undefined in constructor

fun ref set_hunger_level(hunger_level: U64) =>
_hunger_level = hunger_level

variables-fields-implicit-assignment.pony

We will see later in the Methods section that a class can have several constructors. For now,
just remember that if the assignment of a field is not done at the definition level, it has to be
done in each constructor of the class the field belongs to.

As for variables, using var means a field can be assigned and reassigned as many times as you
like in the class. Using let means the field can only be assigned once.

class Wombat
let name: String
var _hunger_level: U64

new ref create(name': String, level: U64) =>
name = name'

_hunger_level = level

fun ref set_hunger_level(hunger_level: U64) =>
_hunger_level = hunger_level // 0Ok, _hunger_level is of var type

42

fun ref set_name(name' : String) =>
name = name' // Error, can't assign to a let definition more than once

variables-fields-let-reassignment.pony:5:17

Can field declarations appear after methods? No. If var or let keywords appear after
a fun or be declaration, they will be treated as variables within the method body rather than
fields within the type declaration. As a result, fields must appear prior to methods in the type
declaration

Embedded Fields

Unlike local variables, some types of fields can be declared using embed. Specifically, only classes
or structs can be embedded - interfaces, traits, primitives and numeric types cannot. A field
declared using embed is similar to one declared using let, but at the implementation level, the
memory for the embedded class is laid out directly within the outer class. Contrast this with
let or var, where the implementation uses pointers to reference the field class. Embedded fields
can be passed to other functions in exactly the same way as let or var fields. Embedded fields
must be initialised from a constructor expression.

Why would I use embed? embed avoids a pointer indirection when accessing a field and a
separate memory allocation when creating that field. By default, it is advised to use embed
if possible. However, since an embedded field is allocated alongside its parent object, exterior
references to the field forbids garbage collection of the parent, which can result in higher memory
usage if a field outlives its parent. Use let if this is a concern for you.

Global variables

Some programming languages have global variables that can be accessed from anywhere in
the code. What a bad idea! Pony doesn’t have global variables at all.

Shadowing

Some programming languages let you declare a variable with the same name as an existing
variable, and then there are rules about which one you get. This is called shadowing, and it’s a
source of bugs. If you accidentally shadow a variable in Pony, the compiler will complain.

If you need a variable with nearly the same name, you can use a prime '.

Operators

Infix Operators

Infix operators take two operands and are written between those operands. Arithmetic and
comparison operators are the most common:

1+ 2
a<b

operators-infix-operator.pony

Pony has pretty much the same set of infix operators as other languages.

43

Operator aliasing

Most infix operators in Pony are actually aliases for functions. The left operand is the receiver
the function is called on and the right operand is passed as an argument. For example, the
following expressions are equivalent:

x +y
x.add(y)

operators-operator-aliasing.pony

This means that + is not a special symbol that can only be applied to magic types. Any type
can provide its own add function and the programmer can then use + with that type if they
want to.

When defining your own add function there is no restriction on the types of the parameter or
the return type. The right side of the + will have to match the parameter type and the whole
+ expression will have the type that add returns.

Here’s a full example for defining a type which allows the use of +. This is all you need:

It is possible to overload infix operators to some degree using union types or f-bounded polymor-
phism, but this is beyond the scope of this tutorial. See the Pony standard library for further
information.

You do not have to worry about any of this if you don’t want to. You can simply use the
existing infix operators for numbers just like any other language and not provide them for your
own types.

The full list of infix operators that are aliases for functions is:

Operator Method Description Note
+ add () Addition

- sub() Subtraction

* mul () Multiplication

/ div() Division

b rem() Remainder

Do mod () Modulo Starting with version 0.26.1
<< sh1() Left bit shift

>> shr() Right bit shift

and op_and () And, both bitwise and logical
or op_or() Or, both bitwise and logical
xor op_xor () Xor, both bitwise and logical
== eqO) Equality

I= ne() Non-equality

< 1t0O Less than

<= le() Less than or equal

>= ge() Greater than or equal

> gt Greater than

>~ gt_unsafe() Unsafe greater than

+~ add_unsafe() Unsafe Addition

-~ sub_unsafe() Unsafe Subtraction

*~ mul_unsafe() Unsafe Multiplication

/~ div_unsafe() Unsafe Division

44

Operator Method Description Note

%o~ rem_unsafe() Unsafe Remainder

VY mod_unsafe() Unsafe Modulo Starting with version 0.26.1
<<~ shl_unsafe() Unsafe left bit shift

>>~ shr_unsafe() Unsafe right bit shift

==~ eq_unsafe() Unsafe equality

=~ ne_unsafe() Unsafe non-equality

<~ 1t_unsafe() Unsafe less than

<=~ le_unsafe() Unsafe less than or equal

>=~ ge_unsafe () Unsafe greater than or equal

+7 add_partial () ? Partial Addition

-7 sub_partial ()7 Partial Subtraction

*7 mul_partial ()7 Partial Multiplication

/7 div_partial()? Partial Division

h? rem_partial () 7 Partial Remainder

hh? mod_partial ()7 Partial Modulo Starting with version 0.26.1

Short circuiting

The and and or operators use short circuiting when used with boolean variables. This means
that the first operand is always evaluated, but the second is only evaluated if it can affect the
result.

For and, if the first operand is false then the second operand is not evaluated since it cannot
affect the result.

For or, if the first operand is true then the second operand is not evaluated since it cannot
affect the result.

This is a special feature built into the compiler, it cannot be used with operator aliasing for any
other type.

Unary operators

The unary operators are handled in the same manner, but with only one operand. For example,
the following expressions are equivalent:

-X

x.neg()
operators-unary-operators.pony

The full list of unary operators that are aliases for functions is:

Operator Method Description
- neg() Arithmetic negation
not op_not() Not, both bitwise and logical

-~ neg_unsafe() Unsafe arithmetic negation

45

Precedence

In Pony, unary operators always bind stronger than any infix operators: not a == b will be
interpreted as (not a) == b instead of not (a == b).

When using infix operators in complex expressions a key question is the precedence, i.e. which
operator is evaluated first. Given this expression:

1 +2 %3 // Compilation failed.
operators-precedence-without-parentheses.pony:3:3

We will get a value of 9 if we evaluate the addition first and 7 if we evaluate the multiplication
first. In mathematics, there are rules about the order in which to evaluate operators and most
programming languages follow this approach.

The problem with this is that the programmer has to remember the order and people aren’t
very good at things like that. Most people will remember to do multiplication before addition,
but what about left bit shifting versus bitwise and? Sometimes people misremember (or guess
wrong) and that leads to bugs. Worse, those bugs are often very hard to spot.

Pony takes a different approach and outlaws infix precedence. Any expression where more than
one infix operator is used must use parentheses to remove the ambiguity. If you fail to do this
the compiler will complain.

This means that the example above is illegal in Pony and should be rewritten as:
1+ @%*3) //7
operators-precedence-with-parentheses.pony
Repeated use of a single operator, however, is fine:
1+2+3 //6
operators-precedence-single-operator.pony

Meanwhile, mixing unary and infix operators do not need additional parentheses as unary
operators always bind more closely, so if our example above used a negative three:

1+ 2% -3 // Compilation failed.
operators-precedence-infix-and-unary-operators-without-parentheses.pony:3:3

We would still need parentheses to remove the ambiguity for our infix operators like we did
above, but not for the unary arithmetic negative (-):

1+ (2%-3) // -5
operators-precedence-infix-and-unary-operators-with-parentheses.pony

We can see that it makes more sense for the unary operator to be applied before either infix as
it only acts on a single number in the expression so it is never ambiguous.

Unary operators can also be applied to parentheses and act on the result of all operations in
those parentheses prior to applying any infix operators outside the parentheses:

1+-(2%-3) // 7T

operators-precedence-unary-operator-with-parentheses.pony

46

Arithmetic

Arithmetic is about the stuff you learn to do with numbers in primary school: Addition, Subtrac-
tion, Multiplication, Division and so on. Piece of cake. We all know that stuff. We nonetheless
want to spend a whole section on this topic, because when it comes to computers the devil is
in the details.

As introduced in Primitives numeric types in Pony are represented as a special kind of primitive
that maps to machine words. Both integer types and floating point types support a rich set of
arithmetic and bit-level operations. These are expressed as Infix Operators that are implemented
as plain functions on the numeric primitive types.

Pony focuses on two goals, performance and safety. From time to time, these two goals collide.
This is true especially for arithmetic on integers and floating point numbers. Safe code should
check for overflow, division by zero and other error conditions on each operation where it can
happen. Pony tries to enforce as many safety invariants at compile time as it possibly can, but
checks on arithmetic operations can only happen at runtime. Code focused on performance
should execute integer arithmetic as fast and with as few CPU cycles as possible. Checking for
overflow is expensive, doing plain dangerous arithmetic that is possibly subject to overflow is
cheap.

Pony provides different ways of doing arithmetic to give programmers the freedom to chose
which operation suits best for them, the safe but slower operation or the fast one, because
performance is crucial for the use case.

Integers
Pony’s default Integer Arithmetic

Doing arithmetic on integer types in Pony with the well known operators like +, —, *, / etc. tries
to balance the needs for performance and correctness. All default arithmetic operations do not
expose any undefined behaviour or error conditions. That means it handles both the cases for
overflow /underflow and division by zero. Overflow/Underflow are handled with proper wrap
around semantics, using one’s complement on signed integers. In that respect we get behaviour
like:

// unsigned wrap-around on overflow
U32.max_value() + 1 ==

// signed wrap-around on overflow/underflow
I32.min_value() - 1 == I32.max_value()

arithmetic-default-integer-arithmetic.pony

Division by zero is a special case, which affects the division / and remainder % operators. In
Mathematics, division by zero is undefined. In order to avoid either defining division as partial,
throwing an error on division by zero or introducing undefined behaviour for that case, the
normal division is defined to be 0 when the divisor is 0. This might lead to silent errors, when
used without care. Choose Partial and checked Arithmetic to detect division by zero.

In contrast to Unsafe Arithmetic default arithmetic comes with a small runtime overhead be-
cause unlike the unsafe variants, it does detect and handle overflow and division by zero.

47

/types/primitives.md#built-in-primitive-types
/expressions/ops.md#infix-operators

Operator Method Description

+ add) wrap around on over-/underflow

- sub() wrap around on over-/underflow

* mul () wrap around on over-/underflow

/ div(Q) x/ 0=0

/A rem() x%0=0

hte mod () x %h 0=0

- neg() wrap around on over-/underflow

>> shr() filled with zeros, so x >> 1 == x/2is true
<< shl1() filled with zeros, so x << 1 == x*2 is true

Unsafe Integer Arithmetic

Unsafe integer arithmetic comes close to what you can expect from integer arithmetic in C. No
checks, raw speed, possibilities of overflow, underflow or division by zero. Like in C, overflow,
underflow and division by zero scenarios are undefined. Don’t rely on the results in these cases.
It could be anything and is highly platform specific. Division by zero might even crash your
program with a SIGFPE. Our suggestion is to use these operators only if you can make sure you
can exclude these cases.

Here is a list with all unsafe operations defined on Integers:

Operator Method Undefined in case of

+~ add_unsafe() Overflow E.g. I32.max_value() +~ I32(1)

-~ sub_unsafe() Overflow

*~ mul_unsafe() Overflow.

/~ div_unsafe() Division by zero and overflow. E.g. 132.min_value() / 132(-1)
%~ rem_unsafe() Division by zero and overflow.

hh~ mod_unsafe() Division by zero and overflow.

-~ neg_unsafe() Overflow. E.g. -—~I32.max_value()

>>~ shr_unsafe() If non-zero bits are shifted out. E.g. I32(1) >>~ U32(2)

<<~ shl_unsafe() If bits differing from the final sign bit are shifted out.

Unsafe Conversion Converting between integer types in Pony needs to happen explicitly.
Each numeric type can be converted explicitly into every other type.

// converting an I32 to a 32 bit floating point
I132(12).£320)

arithmetic-explicit-numeric-conversion.pony

For each conversion operation there exists an unsafe counterpart, that is much faster when
converting from and to floating point numbers. All these unsafe conversion between numeric
types are undefined if the target type is smaller than the source type, e.g. if we convert from
164 to F32.

48

// converting an I32 to a 32 bit floating point, the unsafe way
I32(12) .£32_unsafe()

// an example for an undefined unsafe conversion
I164.max_value() .£32_unsafe()

// an example for an undefined unsafe conversion, that is actually safe
164 (1) .u8 unsafe()

arithmetic-unsafe-conversion.pony

Here is a full list of all available conversions for numeric types:

Safe conversion Unsafe conversion

us8 () u8_unsafe()
ule () ul6_unsafe()
u32() u32_unsafe()
u64 () u64_unsafe()
u128() 1128 unsafe()
ulong() ulong_unsafe()
usize() usize_unsafe()
i8() i8_unsafe()
i16() i16_unsafe()
i320) i32_unsafe()
i64() i64 _unsafe()
i128() i128_unsafe()
ilong () ilong_unsafe()
isize() isize unsafe()
£32(0) £32_unsafe()
£64() £64 unsafe()

Partial and Checked Arithmetic

If overflow or division by zero are cases that need to be avoided and performance is no critical
priority, partial or checked arithmetic offer great safety during runtime. Partial arithmetic
operators error on overflow /underflow and division by zero. Checked arithmetic methods return
a tuple of the result of the operation and a Boolean indicating overflow or other exceptional
behaviour.

Partial as well as checked arithmetic comes with the burden of handling exceptions on every
case and incurs some performance overhead, be warned.

Partial Operator Method Description

+7 add_partial() errors on overflow/underflow

-7 sub_partial() errors on overflow/underflow

*7 mul_partial() errors on overflow/underflow

/7 div_partial() errors on overflow/underflow and division by zero
h? rem_partial() errors on overflow/underflow and division by zero

49

Partial Operator Method Description

hh? mod_partial() errors on overflow/underflow and division by zero

Checked arithmetic functions all return the result of the operation and a Boolean flag indicating
overflow /underflow or division by zero in a tuple.

Checked

Method Description

addc () Checked addition, second tuple element is true on overflow/underflow.

subc () Checked subtraction, second tuple element is true on overflow/underflow.

mulc() Checked multiplication, second tuple element is true on overflow.

divec() Checked division, second tuple element is true on overflow or division by zero.

remc () Checked remainder, second tuple element is true on overflow or division by
ZEro.

modc () Checked modulo, second tuple element is true on overflow or division by zero.

£1dc O Checked floored division, second tuple element is true on overflow or division
by zero.

Floating Point

Pony default arithmetic on floating point numbers (F32, F64) behave as defined in the floating
point standard IEEE 754.

That means e.g. that division by +0 returns Inf and by -0 returns —Inf.

Unsafe Floating Point Arithmetic

Unsafe Floating Point operations do not necessarily comply with IEEE 754 for every input or
every result. If any argument to an unsafe operation or its result are +/-Inf or NaN, the result
is actually undefined.

This allows more aggressive optimizations and for faster execution, but only yields valid results
for values different that the exceptional values +/-Inf and NaN. We suggest to only use unsafe
arithmetic on floats if you can exclude those cases.

Operator Method

+~ add_unsafe()
-~ sub_unsafe()
* mul_unsafe()
/~ div_unsafe()
%~ rem_unsafe()
Too~ mod_unsafe ()
-~ neg_unsafe()
<~ 1t_unsafe()

>~ gt_unsafe()

=~ le unsafe()

20

Operator Method

>=~ ge_unsafe()
=~ eq_unsafe()
1=~ ne_unsafe()

Additionally sqrt_unsafe() is undefined for negative values.

Control Structures

To do real work in a program you have to be able to make decisions, iterate through collections of
items and perform actions repeatedly. For this, you need control structures. Pony has control
structures that will be familiar to programmers who have used most languages, such as if,
while and for, but in Pony, they work slightly differently.

Conditionals

The simplest control structure is the good old if. It allows you to perform some action only
when a condition is true. In Pony it looks like this:

if a > b then
env.out.print("a is bigger")
end

control-structures-conditionals-if.pony:5:7

Can I use integers and pointers for the condition like I can in C? No. In Pony if
conditions must have type Bool, i.e. they are always true or false. If you want to test whether
a number a is not 0, then you need to explicitly say a != 0. This restriction removes a whole
category of potential bugs from Pony programs.

If you want some alternative code for when the condition fails just add an else:

if a > b then

env.out.print("a is bigger")
else

env.out.print("a is not bigger")
end

control-structures-conditionals-if-else.pony:5:9

Often you want to test more than one condition in one go, giving you more than two possible
outcomes. You can nest if statements, but this quickly gets ugly:

if a == b then
env.out.print("they are the same")
else
if a > b then
env.out.print("a is bigger")
else
env.out.print("b bigger")
end
end

o1

control-structures-conditionals-nested-if-else.pony:5:13

As an alternative Pony provides the elseif keyword that combines an else and an if. This
works the same as saying else if in other languages and you can have as many elseifs as
you like for each if.

if a == b then
env.out.print("they are the same")
elseif a > b then
env.out.print("a is bigger")
else
env.out.print("b bigger")
end

control-structures-conditionals-if-elseif-else.pony:5:11

Why can’t I just say “else if” like I do in C? Why the extra keyword? The relationship
between if and else in C, and other similar languages, is ambiguous. For example:

// C code
if (a)
if (b)
printf("a and b\n");
else
printf ("not a\n");

Here it is not obvious whether the else is an alternative to the first or the second if. In fact
here the else relates to the if (b) so our example contains a bug. Pony avoids this type of bug
by handling if and else differently and the need for elseif comes out of that.

Control structures are expressions

The big difference for control structures between Pony and other languages is that in Pony
everything is an expression. In languages like C++ and Java if is a statement, not an expression.
This means that you can’t have an if inside an expression, there has to be a separate conditional
operator ‘7’.

In Pony control flow statements like this are all expressions that hand back a value. Your if
statement hands you back a value. Your for loop (which we’ll get to a bit later) hands you
back a value.

This means you can use if directly in a calculation:
x =1 + if lots then 100 else 2 end
control-structures-conditionals-expressions.pony:5:5

This will give x a value of either 3 or 101, depending on the variable lots.

If the then and else branches of an if produce different types then the if produces a union
of the two.

var x: (String | Bool) =
if friendly then
"Hello"
else
false
end

52

control-structures-conditionals-expression-union-type.pony:4:9

But what if my if doesn’t have an else? Any else branch that doesn’t exist gives an
implicit None.

var x: (String | None) =
if friendly then
"Hello"
end

control-structures-conditionals-expression-implicit-none.pony:4:7

The same rules that apply to the value of an if expression applies to loops as well. Let’s take
a look at what a loop value would look like:

actor Main
new create(env: Env) =>

var x: (String | Nomne) =

for name in ["Bob"; "Fred"; "Sarah"].values() do
name

end

match x

| let s: String => env.out.print("x is " + s)

| None => env.out.print("x is None")

end

control-structures-loop-expression.pony

This will give x the value “Sarah” as it is the last name in our list. If our loop has 0 iterations,
then the value of its else block will be the value of x. Or if there is no else block, the value
will be None.

actor Main
new create(env: Env) =>
var x: (String | None) =
for name in Array[String].values() do
name
end
match x
| let s: String => env.out.print("x is " + s)
| None => env.out.print("x is None")
end

control-structures-loop-expression-none.pony
Here x would be None.

You can also avoid needing None at all by providing a default value for when the loop has 0
iterations by providing an else block.

actor Main
new create(env: Env) =>
var x: String =
for name in Array[String].values() do
name
else
"no names!"

93

end
env.out.print("x is " + x)

control-structures-loop-expression-else.pony

'77

And finally, here the value of x is “no names

Loops

if allows you to choose what to do, but in order to do something more than once, you want a
loop.

While

Pony while loops are very similar to those in other languages. A condition expression is
evaluated and if it’s true we execute the code inside the loop. When we’re done we evaluate the
condition again and keep going until it’s false.

Here’s an example that prints out the numbers 1 to 10:

var count: U32 = 1

while count <= 10 do
env.out.print(count.string())
count = count + 1

end

control-structures-loops-while.pony:3:8

Just like if expressions, while is also an expression. The value returned is just the value of the
expression inside the loop the last time we go round it. For this example that will be the value
given by count = count + 1 when count is incremented to 11. Since Pony assignments hand
back the old value our while loop will return 10.

But what if the condition evaluates to false the first time we try, then we don’t go
round the loop at all? In Pony while expressions can also have an else block. In general,
Pony else blocks provide a value when the expression they are attached to doesn’t. A while
doesn’t have a value to give if the condition evaluates to false the first time, so the else provides
it instead.

So is this like an else block on a while loop in Python? No, this is very different. In
Python, the else is run when the while completes. In Pony the else is only run when the
expression in the while isn’t.

Break

Sometimes you want to stop part-way through a loop and give up altogether. Pony has the
break keyword for this and it is very similar to its counterpart in languages like C++4, C#, and
Python.

break immediately exits from the innermost loop it’s in. Since the loop has to return a value
break can take an expression. This is optional, and if it’s left out, the value from the else
block is returned.

Let’s have an example. Suppose you want to go through a list of names, looking for either
“Jack” or “Jill”. If neither of those appear, you’ll just take the last name you're given, and if
you’re not given any names at all, you’ll use “Herbert”.

54

var name =
while moreNames() do
var name' = getName()
if (name' == "Jack") or (name' == "Jill") then
break name'
end
name'
else
"Herbert"
end

control-structures-loops-while-break-else.pony:10:19

So first we ask if there are any more names to get. If there are then we get a name and see if
it’s “Jack” or “Jill”. If it is we’re done and we break out of the loop, handing back the name
we’ve found. If not we try again.

The line name' appears at the end of the loop so that will be our value returned from the last
iteration if neither “Jack” nor “Jill” is found.

The else block provides our value of “Herbert” if there are no names available at all.

Can I break out of multiple, nested loops like the Java labeled break? No, Pony does
not support that. If you need to break out of multiple loops you should probably refactor your
code or use a worker function.

Continue

Sometimes you want to stop part-way through one loop iteration and move onto the next. Like
other languages, Pony uses the continue keyword for this.

continue stops executing the current iteration of the innermost loop it’s in and evaluates the
condition ready for the next iteration.

If continue is executed during the last iteration of the loop then we have no value to return
from the loop. In this case, we use the loop’s else expression to get a value. As with the if
expression, if no else expression is provided, None is returned.

Can I continue an outer, nested loop like the Java labeled continue? No, Pony does
not support that. If you need to continue an outer loop you should probably refactor your code.

For

For iterating over a collection of items Pony uses the for keyword. This is very similar to
foreach in C#, for..in in Python and for in Java when used with a collection. It is very
different to for in C and C++.

The Pony for loop iterates over a collection of items using an iterator. On each iteration, round
the loop, we ask the iterator if there are any more elements to process, and if there are, we ask
it for the next one.

For example, to print out all the strings in an array:

for name in ["Bob"; "Fred"; "Sarah"].values() do
env.out.print (name)
end

control-structures-loops-for.pony:3:5

5}

Note the call to values() on the array — this is because the loop needs an iterator, not an
array.

The iterator does not have to be of any particular type, but needs to provide the following
methods:

fun has_next(): Bool
fun next(): T?

control-structures-iterator-methods.pony

where T is the type of the objects in the collection. You don’t need to worry about this unless
you're writing your own iterators. To use existing collections, such as those provided in the
standard library, you can just use for and it will all work. If you do write your own iterators,
note that we use structural typing, so your iterator doesn’t need to declare that it provides any
particular type.

You can think of the above example as being equivalent to:

let iterator = ["Bob"; "Fred"; "Sarah"].values()
while iterator.has _next() do

let name = iterator.next()?

env.out.print (name)
end

control-structures-loops-for-while-comparison.pony:4:8

Note that the variable name is declared let, so you cannot assign to the control variable within
the loop.

Can I use break and continue with for loops? Yes, for loops can have else expressions
attached and can use break and continue just as for while.

Repeat

The final loop construct that Pony provides is repeat until. Here we evaluate the expression
in the loop and then evaluate a condition expression to see if we’re done or we should go round
again.

This is similar to do while in C++, C# and Java, except that the termination condition is
reversed; i.e. those languages terminate the loop when the condition expression is false, but
Pony terminates the loop when the condition expression is true.

The differences between while and repeat in Pony are:

1. We always go around the loop at least once with repeat, whereas with while we may not
go round at all.
2. The termination condition is reversed.

Suppose we're trying to create something and we want to keep trying until it’s good enough:

actor Main
new create(env: Env) =>
var counter = U64(1)
repeat
env.out.print("hello!")
counter = counter + 1
until counter > 7 end

o6

control-structures-loops-repeat.pony

Just like while loops, the value given by a repeat loop is the value of the expression within
the loop on the last iteration, and break and continue can be used.

Since you always go round a repeat loop at least once, do you ever need to give it
an else expression? Yes, you may need to. A continue in the last iteration of a repeat loop
needs to get a value from somewhere, and an else expression is used for that.

Match Expressions

If we want to compare an expression to a value then we use an if. But if we want to compare an
expression to a lot of values this gets very tedious. Pony provides a powerful pattern matching
facility, combining matching on values and types, without any special code required.

Matching: the basics
Here’s a simple example of a match expression that produces a string.

match x
| 2 => "int"
| 2.0 => "float"
| "2" => "string"
else

"something else"
end

match-expression.pony
If you’re used to functional languages this should be very familiar.

For those readers more familiar with the C and Java family of languages, think of this like a
switch statement. But you can switch on values other than just integers, like Strings. In fact,
you can switch on any type that provides a comparison function, including your own classes.
And you can also switch on the runtime type of an expression.

A match starts with the keyword match, followed by the expression to match, which is known
as the match operand. In this example, the operand is just the variable x, but it can be any
expression.

Most of the match expression consists of a series of cases that we match against. Each case
consists of a pipe symbol (‘|’), the pattern to match against, an arrow (‘=>’) and the expression
to evaluate if the case matches.

We go through the cases one by one until we find one that matches. (Actually, in practice the
compiler is a lot more intelligent than that and uses a combination of sequential checks and
jump tables to be as efficient as possible.)

Note that each match case has an expression to evaluate and these are all independent. There
is no “fall through” between cases as there is in languages such as C.

If the value produced by the match expression isn’t used then the cases can omit the arrow and
expression to evaluate. This can be useful for excluding specific cases before a more general
case.

Y

Else cases

As with all Pony control structures, the else case for a match expression is used if we have no
other value, i.e. if none of our cases match. The else case, if there is one, must come at the end
of the match, after all of the specific cases.

If the value the match expression results in is used then you need to have an else case, except
in cases where the compiler recognizes that the match is exhaustive and that the else case can
never actually be reached. If you omit it a default will be added which evaluates to None.

The compiler recognizes a match as exhaustive when the union of the types for all patterns that
match on type alone is a supertype of the matched expression type. In other words, when your
cases cover all possible types for the matched expression, the compiler will not add an implicit
else None to your match statement.

Matching on values
The simplest match expression just matches on value.

fun f(x: U32): String =>

match x
| 1 => "one"
| 2 => "two"
| 3 => "three"
| 5 => "not four"
else
"something else"
end

match-values.pony:6:14

For value matching the pattern is simply the value we want to match to, just like a C switch
statement. The case with the same value as the operand wins and we use its expression.

The compiler calls the eq() function on the operand, passing the pattern as the argument. This
means that you can use your own types as match operands and patterns, as long as you define
an eq() function.

class Foo
var _x: U32

new create(x: U32) =>
X =X

fun eq(that: Foo): Bool =>
_x == that._x

actor Main
new create(env: Env) =>
None

fun f(x: Foo): String =>
match x
| Foo(1) => "one"
| Foo(2) => "two"
| Foo(3) => "three"

o8

| Foo(5) => "not four"
else

"something else"
end

match-custom-eqg-operand.pony

Matching on type and value

Matching on value is fine if the match operand and case patterns have all the same type
However, match can cope with multiple different types. Each case pattern is first checked to
see if it is the same type as the runtime type of the operand. Only then will the values be
compared.

fun f(x: (U32 | String | None)): String =>

match x
| None => "none"
| 2 => "two"
| 3 => "three"
| "5" => "not four"
else
"something else"
end

match-type-and-value.pony:6:14

In many languages using runtime type information is very expensive and so it is generally
avoided whenever possible.

In Pony it’s cheap. Really cheap. Pony’s “whole program” approach to compilation means the
compiler can work out as much as possible at compile time. The runtime cost of each type
check is generally a single pointer comparison. Plus of course, any checks which can be fully
determined at compile time are. So for upcasts there’s no runtime cost at all.

When are case patterns for value matching evaluated? Each case pattern expression
that matches the type of the match operand, needs to be evaluated each time the match
expression is evaluated until one case matches (further case patterns are ignored). This can
lead to creating lots of objects unintentionally for the sole purpose of checking for equality. If
case patterns actually only need to differentiate by type, Captures should be used instead, these
boil down to simple type checks at runtime.

At first sight it is easy to confuse a value matching pattern for a type check. Consider the
following example:

class Foo is Equatable[Foo]
actor Main

fun f(x: (Foo | None)): String =>
match x
| Foo => "foo"
| None => "bar"
else

end

29

new create(env: Env) =>
f (Foo)

match-value-pattern-matching-vs-type-check.pony

Both case patterns actually do not check for the match operand x being an instance of Foo
or None, but check for equality with the instance created by evaluating the case pattern (each
time). None is a primitive and thus there is only one instance at all, in which case this value
pattern kind of does the expected thing, but not quite. If None had a custom eq function that
would not use identity equality, this could lead to surprising results.

Remember to always use Captures if all you need is to differentiate by type. Only use value
matching if you need a full blown equality check, be it for structural equality or identity equality.

Captures

Sometimes you want to be able to match the type, for any value of that type. For this, you use
a capture. This defines a local variable, valid only within the case, containing the value of the
operand. If the operand is not of the specified type then the case doesn’t match.

Captures look just like variable declarations within the pattern. Like normal variables, they
can be declared as var or let. If you’re not going to reassign them within the case expression it
is good practice to use let.

fun f(x: (U32 | String | None)): String =>
match x
| None => "none"
| 2 => "two"
| 3 => "three"
| let u: U32 => "other integer"
| let s: String => s
end

match-captures.pony:6:13

Can I omit the type from a capture, like I can from a local variable? Unfortunately
no. Since we match on type and value the compiler has to know what type the pattern is, so it
can’t be inferred.

Implicit matching on capabilities in the context of union types

In union types, when we pattern match on individual classes or traits, we also implicitly pattern
match on the corresponding capabilities. In the example provided below, if _x has static type
(A iso | B ref | None) and dynamically matches A, then we also know that it must be an A
iso.

class A
fun ref sendable() =>
None

class B
fun ref update() =>

None

actor Main
var _x: (A iso | B ref | None)

60

/expressions/equality.md#identity-equality
/expressions/equality.md#structural-equality
/expressions/equality.md#identity-equality

new create(env: Env) =>
x = None

be f(a': A iso) =>
match (_x = None) // type of this expression: (A iso”™ | B ref | None)
| let a: A iso => f(consume a)
| let b: B ref => b.update()
end

match-capabilities.pony

Note that using a match expression to differentiate solely based on capabilities at runtime is
not possible, that is:

class A
fun ref sendable() =>
None

actor Main
var _x: (A iso | A ref | None)

new create(env: Env) =>
_x = None

be £f() =>
match (_x = None)
| let al: iso => None

A
| let a2: A ref => None
end

match-capabilities-only.pony

does not type check.

Matching tuples

If you want to match on more than one operand at once then you can simply use a tuple. Cases
will only match if all the tuple elements match.

fun f(x: (String | None), y: U32): String =>
match (x, y)
| (None, let u: U32) => "none"
| (let s: String, 2) => s + " two"
| (let s: String, 3) => s + " three"
| (let s: String, let u: U32) => s + " other integer"
else
"something else"
end

match-tuples.pony:5:13

Do I have to specify all the elements in a tuple? No, you don’t. Any tuple elements in a
pattern can be marked as “don’t care” by using an underscore (’_’). The first and fourth cases
in our example don’t actually care about the U32 element, so we can ignore it.

61

fun f(x: (String | None), y: U32): String =>
match (x, y)
| (None, _) => "none"
| (let s: String, 2) => s + " two"
| (let s: String, 3) => s + " three"
| (let s: String, _) => s + " other integer"
else
"something else"
end

match-tuples-ignore-elements.pony:5:13

Guards

In addition to matching on types and values, each case in a match can also have a guard
condition. This is simply an expression, evaluated after type and value matching has occurred,
that must give the value true for the case to match. If the guard is false then the case doesn’t
match and we move onto the next in the usual way.

Guards are introduced with the if keyword.

A guard expression may use any captured variables from that case, which allows for handling
ranges and complex functions.

I
A\

fun f(x: (String | None), y: U32): String
match (x, y)
| (None, _) => "none"
| (let s: String, 2) => s + " two"
| (let s: String, 3) => s + " three"
| (let s: String, let u: U32) if u > 14 => s + " other big integer"
| s: String, _) => s + " other small integer"

"something else"
end

match-guards.pony:6:15

As Operator

The as operator in Pony has two related uses. First, it provides a safe way to increase the
specificity of an object’s type. Second, it gives the programmer a way to specify the type of the
items in an array literal.

Expressing a different type of an object

In Pony, each object is an instance of a single concrete type, which is the most specific type
for that object. But the object can also be held as part of a “wider” abstract type such as an
interface, trait, or type union which the concrete type is said to be a subtype of.

as (like match) allows a program to check the runtime type of an abstract-typed value to see
whether or not the object matches a given type which is more specific. If it doesn’t match the
more specific type, then a runtime error is raised. For example:

class Cat
fun pet() =>

62

type Animal is (Cat | Fish | Snake)

fun pet(animal: Animal) =>
try
// raises error if not a Cat
let cat: Cat = animal as Cat
cat.pet ()
end

as-operator-more-specific-type.pony

In the above example, within pet our current view of animal is via the type union Animal.
To treat animal as a cat, we need to do a runtime check that the concrete type of the object
instance is Cat. If it is, then we can pet it. This example is a little contrived, but hopefully
elucidates how as can be used to take a type that is a union and get a specific concrete type
from it.

Note that the type requested as the as argument must exist as a type of the object instance,
unlike C casting where one type can be forced to become another type. Coercion from one
concrete type to another is not possible using as, so one can not do let value:F64 = F32(1.0)
as F64. F32 and F64 are both concrete types and each object can only have a single concrete
type. Many concrete types do provide methods that allow you to convert them to another
concrete type, for example, F32(1.0) .£64 () to convert an F32 to an F64 or F32(1.0) .string()
to convert to a string.

In addition to using as with a union of disjoint types, we can also express an intersected type
of the object, meaning the object has a type that the alias we have for the object is not directly
related to the type we want to express. For example:

trait Alive
trait Well
class Person is (Alive & Well)

class LifeSigns
fun is_all_good(alive: Alive)? =>
// if the instance 'alive' is also of type 'Well' (such as a Person instance). raises e:
let well: Well = alive as Well

as-operator-unrelated-type.pony:1:10

as can also be used to get a more specific type of an object from an alias to it that is an interface
or a trait. Let’s say, for example, that you have a library for doing things with furry, rodent-like
creatures. It provides a Critter interface which programmers can then use to create specific
types of critters.

interface Critter
fun wash(): String

as-operator-more-specific-interface.pony:1:2

The programmer uses this library to create a Wombat and a Capybara class. But the Capybara
class provides a new method, swim(), that is not part of the Critter class. The programmer

63

wants to store all of the critters in an array, in order to carry out actions on groups of critters.
Now assume that when capybaras finish washing they want to go for a swim. The programmer
can accomplish that by using as to attempt to use each Critter object in the Array[Critter]
as a Capybara. If this fails because the Critter is not a Capybara, then an error is raised; the
program can swallow this error and go on to the next item.

interface Critter
fun wash(): String

class Wombat is Critter
fun wash(): String => "I'm a clean wombat!"

class Capybara is Critter
fun wash(): String => "I feel squeaky clean!"
fun swim(): String => "I'm swimming like a fish!"

actor Main
new create(env: Env) =>

let critters = Array[Critter].>push(Wombat) .>push(Capybara)

for critter in critters.values() do
env.out.print(critter.wash())
try

env.out.print((critter as Capybara).swim())

end

end

as-operator-more-specific-interface.pony

You can do the same with interfaces as well. In the example below, we have an Array of Any

which is an interface where we want to try wash any entries that conform to the Critter
interface.

actor Main
new create(env: Env) =>
let anys = Array[Any ref].>push(Wombat) .>push(Capybara)
for any in anys.values() do
try
env.out.print((any as Critter).wash())
end
end

as-operator-more-specific-interface-with-reference-capability.pony:11:18

Note, All the as examples above could be written using a match statement where a failure to
match results in error. For example, our last example written to use match would be:

actor Main
new create(env: Env) =>
let anys = Array[Any ref].>push(Wombat) .>push(Capybara)
for any in anys.values() do

try
match any
| let critter: Critter =>
env.out.print(critter.wash())
else

64

error
end
end
end

as-operator-match-statement-comparison.pony:11:23

Thinking of the as keyword as “an attempt to match that will error if not matched” is a good
mental model to have. If you don’t care about handling the “not matched” case that causes an
error when using as, you can rewrite an as to use match without an error like:

actor Main
new create(env: Env) =>

let anys = Array[Any ref].>push(Wombat) .>push(Capybara)

for any in anys.values() do
match any
| let critter: Critter =>

env.out.print(critter.wash())

end

end

as-operator-match-statement-without-try.pony:11:19

You can learn more about matching on type in the captures section of the match documentation.

Specify the type of items in an array literal

The as operator can also be used to tell the compiler what type to use for the items in an array
literal. In many cases, the compiler can infer the type, but sometimes it is ambiguous.

For example, in the case of the following program, the method foo can take either an
Array[U32] ref or an Array[U64] ref as an argument. If a literal array is passed as an
argument to the method and no type is specified then the compiler cannot deduce the correct
one because there are two equally valid ones.

actor Main
fun foo(xs: (Array[U32] ref | Array[U64] ref)): Bool =>
// do something boring here
true

new create(env: Env) =>
foo([as U32: 1; 2; 31)
// the compiler would complain about this:
// foo(l1l; 2; 31)

as-operator-array-literal.pony

The requested type must be a valid type for the items in the array. Since these types are checked
at compile time they are guaranteed to work, so there is no need for the programmer to handle
an error condition.

Methods

All Pony code that actually does something, rather than defining types etc, appears in named
blocks which are referred to as methods. There are three kinds of methods: functions, construc-

65

/expressions/match.md#captures

tors, and behaviours. All methods are attached to type definitions (e.g. classes) - there are no
global functions.

Behaviours are used for handling asynchronous messages sent to actors, which we’ve seen in the
“Types” chapter when we talked about actors.

Can I have some code outside of any methods like I do in Python? No. All Pony code
must be within a method.

Functions

Pony functions are quite like functions (or methods) in other languages. They can have 0 or
more parameters and 0 or 1 return values. If the return type is omitted then the function will
have a return value of None.

class C
fun add(x: U32, y: U32): U32 =>
Xty

fun nop() =>
add(1, 2) // Pointless, we ignore the result

methods-functions.pony:6:11

The function parameters (if any) are specified in parentheses after the function name. Functions
that don’t take any parameters still need to have the parentheses.

Each parameter is given a name and a type. In our example function add has 2 parameters, x
and y, both of which are type U32. The values passed to a function call (the 1 and 2 in our
example) are called arguments and when the call is made they are evaluated and assigned to
the parameters. Parameters may not be assigned to within the function - they are effectively
declared let.

After the parameters comes the return type. If nothing will be returned this is simply omitted.

After the return value, there’s a => and then finally the function body. The value returned is
simply the value of the function body (remember that everything is an expression), which is
simply the value of the last command in the function.

If you want to exit a function early then use the return command. If the function has a return
type then you need to provide a value to return. If the function does not have a return type
then return should appear on its own, without a value.

Can I overload functions by argument type? No, you cannot have multiple methods with
the same name in the same type.

Constructors

Pony constructors are used to initialise newly created objects, as in many languages. However,
unlike many languages, Pony constructors are named so you can have as many as you like,
taking whatever parameters you like. By convention, the main constructor of each type (if
there is such a thing for any given type) is called create.

class Foo
var _x: U32

new create() =>

66

/types/actors.md#behaviours

methods-constructors.pony:6:13

The purpose of a constructor is to set up the internal state of the object being created. To
ensure this is done constructors must initialise all the fields in the object being constructed.

Can I exit a constructor early? Yes. Just then use the return command without a value.
The object must already be in a legal state to do this.

Calling

As in many other languages, methods in Pony are called by providing the arguments within
parentheses after the method name. The parentheses are required even if there are no arguments
being passed to the method.

class Foo
fun hello(name: String): String =>
"hello " + name

fun £ =>
let a = hello("Fred")
methods-functions-calling.pony

Constructors are usually called “on” a type, by specifying the type that is to be created. To do
this just specify the type, followed by a dot, followed by the name of the constructor you want
to call.

class Foo
var _x: U32

new create() =>

new from_int(x: U32) =>

class Bar
fun £() =>
var a: Foo

Foo.create()
Foo.from_int (3)

var b: Foo
methods-constructors-calling.pony

Functions are always called on an object. Again just specify the object, followed by a dot,
followed by the name of the function to call. If the object to call on is omitted then the current
object is used (i.e. this).

class Foo
var _x: U32

new create() =>
x =0

67

new from_int(x: U32) =>
X =X

fun get(): U32 =>
X

class Bar
fun £() =>
var a: Foo = Foo.from_int(3)
var b: U32 = a.get()
var c: U32 = g(b)

fun g(x: U32): U32 =>
x +1
methods-functions-calling-implicit-this.pony

Constructors can also be called on an expression. Here an object is created of the same type as
the specified expression - this is equivalent to directly specifying the type.

class Foo
var _x: U32

new create() =>

new from_int(x: U32) =>

class Bar
fun £() =>
var a: Foo
var b: Foo

Foo.create()
a.from_int(3)

methods-constructors-calling-on-expression.pony
We can even reuse the variable name in the assignment expression to call the constructor.

class Bar
fun £ =>
var a: Foo = a.create()

methods-constructors-calling-reuse-variable-name.pony

Here we specify that var a is type Foo, then proceed to use a to call the constructor, create (),
for objects of type Foo.

Default arguments

When defining a method you can provide default values for any of the arguments. The caller
then has the choice to use the values you have provided or to provide their own. Default
argument values are specified with a = after the parameter name.

class Coord
var _x: U32

68

var _y: U32

new create(x: U32 = 0, y: U32 = 0) =>

X =X
Y=Y
class Bar
fun £() =>
var a: Coord = Coord.create() // Contains (0, 0)
var b: Coord = Coord.create(3) // Contains (3, 0)

var c: Coord = Coord.create(3, 4) // Contains (3, 4)

methods-default-arguments.pony

Do I have to provide default values for all of my arguments? No, you can provide
defaults for as many, or as few, as you like.

Named arguments

So far, when calling methods we have always given all the arguments in order. This is known
as using positional arguments. However, we can also specify the arguments in any order by
specifying their names. This is known as using named arguments.

To call a method using named arguments the where keyword is used, followed by the named
arguments and their values.

class Coord
var _x: U32
var _y: U32

new create(x: U32 = 0, y: U32 = 0) =>

class Bar
fun £ =>
var a: Coord = Coord.create(3, 4) // Contains (3, 4)
var b: Coord = Coord.create(where y = 4, x = 3) // Contains (3, 4)

methods-named-arguments.pony

Note how in b above, the arguments were given out of order by using where followed using the
name of the arguments.

Should I specify where for each named argument? No. There must be only one where in
a method call.

Named and positional arguments can be used together in a single call. Just start with the
positional arguments you want to specify, then a where and finally the named arguments. But
be careful, each argument must be specified only once.

Default arguments can also be used in combination with positional and named arguments - just
miss out any for which you want to use the default.

class Foo
fun f(a: U32 =1, b: U32 = 2, c: U32 =3, d: U32 = 4, e: U32 = 5): U32 =>
0

69

fun g0 =>
£f(6, 7 where d = 8)
// Equivalent to:
f(6, 7, 3, 8, 5)

methods-named-and-positional-arguments-combined.pony

Can I call using positional arguments but miss out the first one? No. If you use
positional arguments they must be the first ones in the call.

Chaining

Method chaining allows you to chain calls on an object without requiring the method to return
its receiver. The syntax to call a method and chain the receiver is object.>method (), which is
roughly equivalent to (object.method() ; object). Chaining a method discards its normal
return value.

primitive Printer
fun print_two_strings(out: StdStream, sl: String, s2: String) =>
out.>print(sl).>print(s2)
// Equivalent to:
out.print(sl)
out.print(s2)
out

methods-chaining.pony
Note that the last .> in a chain can be a . if the return value of the last call matters.

interface Factory
fun add_option(o: Option)
fun make_object(): Object

primitive Foo
fun object_wrong(f: Factory, ol: Option, 02: Option): Object =>
f.>add_option(ol) .>add_option(o2) .>make_object() // Error! The expression returns a Fac

fun object_right(f: Factory, ol: Option, 02: Option): Object =>
f.>add_option(ol).>add_option(o2) .make_object() // Works. The expression returns an Obj¢

methods-chaining-return-value.pony

Anonymous methods
Pony has anonymous methods (or Lambdas). They look like this:

use "collections"

actor Main
new create(env: Env) =>
let list_of numbers = List[U32].from([1; 2; 3; 4])
let is_odd = {(n: U32): Bool => (n % 2) == 1}
for odd_number in list_of numbers.filter(is_odd) .values() do
env.out.print (odd_number.string())
end

70

methods-anonymous-methods.pony

They are presented more in-depth in the Object Literals section.

Privacy

In Pony, method names start either with a lower case letter or with an underscore followed by
a lowercase letter. Methods with a leading underscore are private. This means they can only
be called by code within the same package. Methods without a leading underscore are public
and can be called by anyone.

Can I start my method name with 2 (or more) underscores? No. If the first character
is an underscore then the second one MUST be a lower case letter.

Precedence

We have talked about precedence of operators before, and in Pony, method calls and field
accesses have higher precedence than any operators.

To sum up, in complex expressions,

1. Method calls and field accesses have higher precedence than any operators.

2. Unary operator have higher precedence than infix operators.

3. When mixing infix operators in complex expressions, we must use parentheses to specify
any precedence explicitly.

Errors

Pony doesn’t feature exceptions as you might be familiar with them from languages like Python,
Java, C++ et al. It does, however, provide a simple partial function mechanism to aid in error
handling. Partial functions and the error keyword used to raise them look similar to exceptions
in other languages but have some important semantic differences. Let’s take a look at how you
work with Pony’s error and then how it differs from the exceptions you might be used to.

Raising and handling errors

An error is raised with the command error. At any point, the code may decide to declare an
error has occurred. Code execution halts at that point, and the call chain is unwound until the
nearest enclosing error handler is found. This is all checked at compile time so errors cannot
cause the whole program to crash.

Error handlers are declared using the try-else syntax.

try
callA()
if not callB() then error end
callC()
else
callD()
end

errors-try-else.pony:9:15

In the above code callA () will always be executed and so will callB(). If the result of callB()
is true then we will proceed to callC() in the normal fashion and callD() will not then be
executed.

71

/expressions/object-literals.md
/expressions/ops.md#precedence

However, if callB() returns false, then an error will be raised. At this point, execution will
stop and the nearest enclosing error handler will be found and executed. In this example that
is, our else block and so callD() will be executed.

In either case, execution will then carry on with whatever code comes after the try end.

Do I have to provide an error handler? No. The try block will handle any errors regardless.
If you don’t provide an error handler then no error handling action will be taken - execution
will simply continue after the try expression.

If you want to do something that might raise an error, but you don’t care if it does you can
just put it in a try block without an else.

try
// Do something that may raise an error
end

errors-try-without-else.pony

Is there anything my error handler has to do? No. If you provide an error handler then
it must contain some code, but it is entirely up to you what it does.

What’s the resulting value of a try block? The result of a try block is the value of the
last statement in the try block, or the value of the last statement in the else clause if an error
was raised. If an error was raised and there was no else clause provided, the result value will
be None.

Partial functions

Pony does not require that all errors are handled immediately as in our previous examples.
Instead, functions can raise errors that are handled by whatever code calls them. These are
called partial functions (this is a mathematical term meaning a function that does not have
a defined result for all possible inputs, i.e. arguments). Partial functions must be marked as
such in Pony with a ?, both in the function signature (after the return type) and at the call
site (after the closing parentheses).

For example, a somewhat contrived version of the factorial function that accepts a signed integer
will error if given a negative input. It’s only partially defined over its valid input type.

fun factorial(x: I32): I32 7 =>
if x < 0 then error end
if x == 0 then
1
else
x * factorial(x - 1)7
end

errors-partial-functions.pony:16:22

Everywhere that an error can be generated in Pony (an error command, a call to a partial
function, or certain built-in language constructs) must appear within a try block or a function
that is marked as partial. This is checked at compile time, ensuring that an error cannot escape
handling and crash the program.

Prior to Pony 0.16.0, call sites of partial functions were not required to be marked with a ?.
This often led to confusion about the possibilities for control flow when reading code. Having
every partial function call site clearly marked makes it very easy for the reader to immediately

72

understand everywhere that a block of code may jump away to the nearest error handler, making
the possible control flow paths more obvious and explicit.

Partial constructors and behaviours

Class constructors may also be marked as partial. If a class constructor raises an error then the
construction is considered to have failed and the object under construction is discarded without
ever being returned to the caller.

When an actor constructor is called the actor is created and a reference to it is returned imme-
diately. However, the constructor code is executed asynchronously at some later time. If an
actor constructor were to raise an error it would already be too late to report this to the caller.
For this reason, constructors for actors may not be partial.

Behaviours are also executed asynchronously and so cannot be partial for the same reason.

Try-then blocks

In addition to an else error handler, a try command can have a then block. This is executed
after the rest of the try, whether or not an error is raised or handled. Expanding our example
from earlier:

try
callA()
if not callB() then error end
callc()
else
callD()
then
callE()
end

errors-try-then.pony:9:17

The callE() will always be executed. If callB() returns true then the sequence executed is
callA(), callB(), callC(), callE(). If callB() returns false then the sequence executed is
callA(), callB(), callD(), callEQ).

Do I have to have an else error handler to have a then block? No. You can have a
try-then block without an else if you like.

Will my then block really always be executed, even if I return inside the try? Yes,
your then expression will always be executed when the try block is complete. The only way
it won’t be is if the try never completes (due to an infinite loop), the machine is powered off,
or the process is killed (and then, maybe).

With blocks

A with expression can be used to ensure disposal of an object when it is no longer needed. A
common case is a database connection which needs to be closed after use to avoid resource leaks
on the server. For example:

with obj = SomeObjectThatNeedsDisposing() do
// use obj
end

errors-with-blocks.pony

73

obj.dispose() will be called whether the code inside the with block completes successfully or
raises an error. To take part in a with expression, the object that needs resource clean-up must,
therefore, provide a dispose () method:

class SomeObjectThatNeedsDisposing
// constructor, other functions
fun dispose() =>
// release resources
errors-dispose.pony
Multiple objects can be set up for disposal:

with obj = SomeObjectThatNeedsDisposing(), other = SomeOtherDisposableObject() do
// use obj and other
end

errors-dispose-multiple.pony

The value of a with expression is the value of the last expression in the block.

Language constructs that can raise errors

The only language construct that can raise an error, other than the error command or calling
a partial method, is the as command. This converts the given value to the specified type if it
can be. If it can’t then an error is raised. This means that the as command can only be used
inside a try block or a partial method.

Comparison to exceptions in other languages

Pony errors behave very much the same as those in C++, Java, C#, Python, and Ruby. The key
difference is that Pony errors do not have a type or instance associated with them. This makes
them the same as C++ exceptions would be if a fixed literal was always thrown, e.g. throw 3;.
This difference simplifies error handling for the programmer and allows for much better runtime
error handling performance.

The else handler in a try expression is just like a catch(...) in C++, catch(Exception e)
in Java or C#, except: in Python, or rescue in Ruby. Since exceptions do not have types
there is no need for handlers to specify types or to have multiple handlers in a single try block.

The then block in a try expression is just like a finally in Java, C#, or Python and ensure
in Ruby.

If required, error handlers can “reraise” by using the error command within the handler.

Equality in Pony

Pony features two forms of equality: by structure and by identity.

Identity equality

Identity equality checks in Pony are done via the is keyword. is verifies that the two items
are the same.

if None is None then
// TRUE!

74

// There is only 1 None so the identity is the same

end
let a = Foo("hi")
let b = Foo("hi")

if a is b then
// NOPE. THIS IS FALSE
end

let c = a

if a is c¢ then
// YUP! TRUE!

end

equality-identity-equality.pony

Structural equality

Structural equality checking in Pony is done via the infix operator ==. It verifies that two items
have the same value. If the identity of the items being compared is the same, then by definition
they have the same value.

You can define how structural equality is checked on your object by implementing fun eq(that:
box->Foo) : Bool. Remember, since == is an infix operator, eq must be defined on the left
operand, and the right operand must be of type Foo.

class Foo
let _a: String

new create(a: String) =>
_a=a

fun eq(that: box->Foo): Bool =>
this._a == that._a

actor Main
new create(e: Env) =>
let a = Foo("hi")

let b = Foo("bye")
let ¢ = Foo("hi")
if == b then

// won't print
e.out.print("1")
end

if a == c then
// will print
e.out.print("2")

end

if a is c then

75

// won't print
e.out.print("3")
end

equality-structural-equality.pony

If you don’t define your own eq, you will inherit the default implementation that defines equal
by value as being the same as by identity.

interface Equatable[A: Equatable[A] #read]
fun eq(that: box->A): Bool => this is that
fun ne(that: box->A): Bool => not eq(that)

equality-equatable-default-implementation.pony

Primitives and equality

As you might remember from Chapter 2, primitives are the same as classes except for two
important differences:

e A primitive has no fields.
e There is only one instance of a user-defined primitive.

This means, that every primitive of a given type, is always structurally equal and equal based
on identity. So, for example, None is always None.

if None is None then
// this is always true
end

if None == Nomne then
// this is also always true
end

equality-primitives.pony

Sugar

Pony allows you to omit certain small details from your code and will put them back in for you.
This is done to help make your code less cluttered and more readable. Using sugar is entirely
optional, you can always write out the full version if you prefer.

Apply

Many Pony classes have a function called apply which performs whatever action is most common
for that type. Pony allows you to omit the word apply and just attempt to do a call directly
on the object. So:

var foo = Foo.create()
foo()

sugar-apply-implicit.pony
becomes:

var foo = Foo.create()
foo.applyO

76

/types/primitives.md

sugar-apply-explicit.pony
Any required arguments can be added just like normal method calls.

var foo = Foo.create()
foo(x, 37 where crash = false)

sugar-apply-with-arguments-implicit.pony
becomes:

var foo = Foo.create()
foo.apply(x, 37 where crash = false)

sugar-apply-with-arguments-explicit.pony

Do I still need to provide the arguments to apply? Yes, only the apply will be added for
you, the correct number and type of arguments must be supplied. Default and named arguments
can be used as normal.

How do I call a function foo if apply is added? The apply sugar is only added when
calling an object, not when calling a method. The compiler can tell the difference and only
adds the apply when appropriate.

Create

To create an object you need to specify the type and call a constructor. Pony allows you to
miss out the constructor and will insert a call to create() for you. So:

var foo = Foo
sugar-create-implicit.pony

becomes:

var foo = Foo.create()
sugar-create-explicit.pony

Normally types are not valid things to appear in expressions, so omitting the constructor call is
not ambiguous. Remember that you can easily spot that a name is a type because it will start
with a capital letter.

If arguments are needed for create these can be provided as if calling the type. Default and
named arguments can be used as normal.

var foo = Foo(x, 37 where crash = false)
sugar-create-with-arguments-implicit.pony

becomes:

var foo = Foo.create(x, 37 where crash = false)
sugar-create-with-arguments-explicit.pony

What if I want to use a constructor that isn’t named create? Then the sugar can’t
help you and you have to write it out yourself.

If the create I want to call takes no arguments can I still put in the parenthe-
ses? No. Calls of the form Type() use the combined create-apply sugar (see below). To get
Type.create() just use Type.

7

Combined create-apply

If a type has a create constructor that takes no arguments then the create and apply sugar can
be used together. Just call on the type and calls to create and apply will be added. The call to
create will take no arguments and the call to apply will take whatever arguments are supplied.

var foo = Foo()
var bar = Bar(x, 37 where crash = false)

sugar-create-apply-combined-implicit.pony
becomes:

var foo = Foo.create().apply()
var bar = Bar.create().apply(x, 37 where crash = false)

sugar-create-apply-combined-explicit.pony

What if the create has default arguments? Do I get the combined create-apply
sugar if I want to use the defaults? The combined create-apply sugar can only be used
when the create constructor has no arguments. If there are default arguments then this sugar
cannot be used.

Update

The update sugar allows any class to use an assignment to accept data. Many languages allow
this for assigning into collections, for example, a simple C array, a[3] = x;.

In any assignment where the left-hand side is a function call, Pony will translate this to a call
to update, with the value from the right-hand side as an extra argument. So:

foo(37) = x

sugar-update-implicit.pony:18:18
becomes:

foo.update (37 where value = x)

sugar-update-explicit.pony:18:18

The value from the right-hand side of the assignment is always passed to a parameter named
value. Any object can allow this syntax simply by providing an appropriate function update
with an argument value.

Does my update function have to have a single parameter that takes an integer?
No, you can define update to take whatever parameters you like, as long as there is one called
value. The following are all fine:

fool(2, 3) = x
foo2() = x
foo3(37, "Hello", 3.5 where a = 2, b = 3) = x

sugar-update-additional-parameters.pony:23:25

Does it matter where value appears in my parameter list? Whilst it doesn’t strictly
matter it is good practice to put value as the last parameter. That way all of the others can
be specified by position.

78

See also

o Lambdas (Sugar for an object with an apply () method)
o Capability constraints (Sugar for reference capability combinations in the context of generic

types)
o Default reference capabilities (Sugar for implicit default values in the context of generic

types)

Object Literals

Sometimes it’s really convenient to be able to write a whole object inline. In Pony, this is called
an object literal, and it does pretty much exactly what an object literal in JavaScript does: it
creates an object that you can use immediately.

But Pony is statically typed, so an object literal also creates an anonymous type that the object
literal fulfills. This is similar to anonymous classes in Java and C#. In Pony, an anonymous
type can provide any number of traits and interfaces.

What’s this look like, then?

It basically looks like any other type definition, but with some small differences. Here’s a simple
one:

object
fun apply(): String => "hi"
end

object-literals-object-literal.pony:4:6

Ok, that’s pretty trivial. Let’s extend it so that it explicitly provides an interface so that
the compiler will make sure the anonymous type fulfills that interface. You can use the same
notation to provide traits as well.

object is Hashable

fun apply(): String => "hi"

fun hash(): USize => this().hash()
end

object-literals-object-literal-with-interface.pony:6:9

What we can’t do is specify constructors in an object literal, because the literal is the constructor.
So how do we assign to fields? Well, we just assign to them. For example:

use "collections"

class Foo
fun foo(str: String): Hashable =>
object is Hashable
let s: String = str
fun apply(): String => s
fun hash(): USize => s.hash()
end

object-literals-fields-assignment.pony:1:9

79

/expressions/object-literals.md#lambdas
/generics/generic-constraints.md
/reference-capabilities/index.md
/generics/generics-and-reference-capabilities.md

When we assign to a field in the constructor, we are capturing from the lexical scope the object
literal is in. Pretty fun stuff! It lets us have arbitrarily complex closures that can even have
multiple entry points (i.e. functions you can call on a closure).

An object literal with fields is returned as a ref by default unless an explicit reference capability
is declared by specifying the capability after the object keyword. For example, an object with
sendable captured references can be declared as iso if needed:

use "collections"

class Foo
fun foo(str: String): Hashable iso™ =>
object iso is Hashable
let s: String = str
fun apply(): String => s
fun hash(): USize => s.hash()
end

object-literals-reference-capability.pony:1:9

We can also implicitly capture values from the lexical scope by using them in the object literal.
Sometimes values that aren’t local variables, aren’t fields, and aren’t parameters of a function
are called free variables. By using them in a function, we are closing over them - that is,
capturing them. The code above could be written without the field s:

use "collections"
class Foo
fun foo(str: String): Hashable iso”™ =>
object iso is Hashable
fun apply(): String => str

fun hash(): USize => str.hash()
end

object-literals-closing-over-values.pony:1:8

Lambdas

Arbitrarily complex closures are nice, but sometimes we just want a simple closure. In Pony,
you can use the lambdas for that. A lambda is written as a function (implicitly named apply)
enclosed in curly brackets:

{(s: String): String => "lambda: " + s }
object-literals-lambda.pony:4:4
This produces the same code as:

object
fun apply(s: String): String => "lambda: " + s
end

object-literals-lambda-as-explicit-object-literal.pony:4:6

The reference capability of the lambda object can be declared by appending it after the closing
curly bracket:

{(s: String): String => "lambda: " + s } iso

80

object-literals-lambda-with-reference-capability.pony:4:4
This produces the same code as:

object iso
fun apply(s: String): String => "lambda: " + s
end

object-literals-lambda-with-reference-capability-as-explicit-object-literal.pony:4:6

Lambdas can be used to capture from the lexical scope in the same way as object literals can
assign from the lexical scope to a field. This is done by adding a second argument list after the
parameters:

class Foo
new create(env: Env) =>
foo({(s: String) (env) => env.out.print(s) })

fun foo(f: {(String)l}) =>
f("Hello World")

object-literals-lambda-capture-values.pony:5:10

It’s also possible to use a capture list to create new names for things. A capture list is a second
parenthesised list after the parameters:

new create(env: Env) =>
foo({(s: String) (myenv = env) => myenv.out.print(s) })

object-literals-lambda-capture-and-rename-values.pony:6:7

The type of a lambda is also declared using curly brackets. Within the brackets, the function
parameter types are specified within parentheses followed by an optional colon and return type.
The example above uses {(String)} to be the type of a lambda function that takes a String
as an argument and returns nothing.

If the lambda object is not declared with a specific reference capability, the reference capability is
inferred from the structure of the lambda. If the lambda does not have any captured references,
it will be val by default; if it does have captured references, it will be ref by default. The
following is an example of a val lambda object:

use "collections"

actor Main
new create(env: Env) =>
let 1 = List[U32]
1.>push(10) .>push(20) . >push(30) . push (40)
let r = reduce(l, 0, {(a:U32, b:U32): U32 => a + b })
env.out.print("Result: " + r.string())

fun reduce(l: List[U32], acc: U32, f: {(U32, U32): U32} val): U32 =>
try
let acc' = f(acc, 1l.shift()?)
reduce(l, acc', f)
else
acc
end

81

object-literals-lambda-reference-capabilities.pony

The reduce method in this example requires the lambda type for the f parameter to require
a reference capability of val. The lambda object passed in as an argument does not need to
declare an explicit reference capability because val is the default for a lambda that does not
capture anything.

As mentioned previously the lambda desugars to an object literal with an apply method. The
reference capability for the apply method defaults to box like any other method. In a lambda
that captures references, this needs to be ref if the function needs to modify any of the captured
variables or call ref methods on them. The reference capability for the method (versus the
reference capability for the object which was described above) is defined by putting the capability
before the parenthesized argument list.

use "collections"

actor Main
new create(env: Env) =>

let 1 = List[String]

1.>push("hello") .push("world")

var count = U32(0)

for_each(l, {ref(s:String) =>
env.out.print(s)
count = count + 1

b
// Displays 'O' as the count
env.out.print("Count: " + count.string())

fun for_each(l: List[Stringl, f: {ref(String)} ref) =>
try
£f(1.shift()7)
for_each(l, f)
end

object-literals-lambda-reference-capabilities-2.pony

This example declares the type of the apply function that is generated by the lambda expression
as being ref. The lambda type declaration for the f parameter in the for_each method also
declares it as ref. The reference capability of the lambda type must also be ref so that
the method can be called. The lambda object does not need to declare an explicit reference
capability because ref is the default for a lambda that has captures.

The above example also notes a subtle reality of captured references. At first glance one might
expect count to have been incremented by the application of £. However, reassigning a reference,
count = count + 1, inside a lambda or object literal can never cause a reassignment in the
outer scope. If count were an object with reference capabilities permitting mutation, the
captured reference could be modified with for example count.increment(). The resulting
mutation would be visible to any location holding a reference to the same object as count.

Actor literals

Normally, an object literal is an instance of an anonymous class. To make it an instance of an
anonymous actor, just include one or more behaviours in the object literal definition.

82

object
be apply() => env.out.print("hi")
end

object-literals-actor-literal.pony:4:6

An actor literal is always returned as a tag.

Primitive literals

When an anonymous type has no fields and no behaviours (like, for example, an object literal
declared as a lambda literal), the compiler generates it as an anonymous primitive, unless a
non-val reference capability is explicitly given. This means no memory allocation is needed to
generate an instance of that type.

In other words, in Pony, a lambda that doesn’t close over anything has no memory allocation
overhead. Nice.

A primitive literal is always returned as a val.

Partial Application

Partial application lets us supply some of the arguments to a constructor, function, or behaviour,
and get back something that lets us supply the rest of the arguments later.

A simple case
A simple case is to create a “callback” function. For example:
class Foo

var _f: F64 = 0

fun ref addmul(add: F64, mul: F64): F64 =>
_f = (_f + add) * mul

class Bar
fun apply() =>
let foo: Foo = Foo
let f = foo~addmul(3)
£(4)

partial-application-callback-function-with-some-arguments-bound.pony

This is a bit of a silly example, but hopefully, the idea is clear. We partially apply the addmul
function on foo, binding the receiver to foo and the add argument to 3. We get back an object,
f, that has an apply method that takes a mul argument. When it’s called, it in turn calls
foo.addmul (3, mul).

We can also bind all the arguments:

let f = foo~addmul(3, 4)
£0O

partial-application-callback-function-with-all-arguments-bound.pony

Or even none of the arguments:

83

let f = foo~addmul()
£(3, 4

partial-application-callback-function-with-no-arguments-bound.pony

Out of order arguments

Partial application with named arguments allows binding arguments in any order, not just left
to right. For example:

let f = foo~addmul (where mul = 4)
f£(3)

partial-application-callback-function-with-out-of-order-arguments.pony

Here, we bound the mul argument but left add unbound.

Partial application is just a lambda

Under the hood, we're assembling an object literal for partial application, just as if you had
written a lambda yourself. It captures aliases of some of the lexical scope as fields and has an
apply function that takes some, possibly reduced, number of arguments. This is actually done
as sugar, by rewriting the abstract syntax tree for partial application to be an object literal,
before code generation.

That means partial application results in an anonymous class and returns a ref. If you need
another reference capability, you can wrap partial application in a recover expression. It also
means that we can’t consume unique fields for a lambda, as the apply method might be called
many times.

Partially applying a partial application

Since partial application results in an object with an apply method, we can partially apply the
result!

let f = foo~addmul ()
let f2 = f~apply(where mul = 4)
£2(3)

partial-application-partially-applying-a-partial-application.pony

Reference Capabilities

We’ve covered the basics of Pony’s type system and then expressions, this chapter about refer-
ence capabilities will cover another feature of Pony’s type system. There aren’t currently any
mainstream programming languages that feature reference capabilities. What is a reference
capability?

Well, a reference capability is built on the idea of “a capability”. A capability is the ability to do
“something”. Usually that “something” involves an external resource that you might want access
to; like the file system or the network. This usage of capability is called an object capability
and is discussed in the next chapter.

Pony also features a different kind of capability, called a “reference capability”. Where object
capabilities are about being granted the ability to do things with objects, reference capabilities
are about denying you the ability to do things with memory references. For example, “you can

84

/object-capabilities/index.md

have access to this memory BUT ONLY for reading it. You can not write to it”. That’s a
reference capability and it’s denying you access to do things.

Reference capabilities are core to what makes Pony special. You might remember in the intro-
duction to this tutorial what we said about Pony:

o It’s type safe. Really type safe. There’s a mathematical proof and everything.

e It’s memory safe. Ok, this comes with type safe, but it’s still interesting. There are no
dangling pointers, no buffer overruns, heck, the language doesn’t even have the concept
of null!

o It’s exception safe. There are no runtime exceptions. All exceptions have defined seman-
tics, and they are always handled.

e It’s data-race-free. Pony doesn’t have locks or atomic operations or anything like that.
Instead, the type system ensures at compile time that your concurrent program can never
have data races. So you can write highly concurrent code and never get it wrong.

o It’s deadlock free. This one is easy because Pony has no locks at all!l So they definitely
don’t deadlock, because they don’t exist.

Reference capabilities are what make all that awesome possible.

Code examples in this chapter might be kind of sparse, because we’re largely dealing with
higher-level concepts. Try to read through the chapter at least once before starting to put the
ideas into practice. By the time you finish this chapter, you should start to have a handle on
what reference capabilities are and how you can use them. Don’t worry if you struggle with
them at first. For most people, it’s a new way of thinking about your code and takes a while
to grasp. If you get stuck trying to get your capabilities right, definitely reach out for help.
Once you've used them for a couple weeks, problems with capabilities start to melt away, but
before that can be a real struggle. Don’t worry, we all went through that struggle. In fact,
there’s a section of the Pony website dedicated to resources that can help in learning reference
capabilities. And by all means, reach out to the Pony community for help. We are here to help
you get over the reference capabilities learning curve. It’s not easy. We know that. It’s a new
way of thinking for folks, so do please reach out. We’re waiting to hear from you.

Scared? Don’t be. Ready? Good. Let’s get started.

Reference Capabilities

So if the object is the capability, what controls what we can do with the object? How do we
express our access rights on that object?

In Pony, we do it with reference capabilities.

Rights are part of a capability

If you open a file in UNIX and get a file descriptor back, that file descriptor is a token that
designates an object - but it isn’t a capability. To be a capability, we need to open that file
with some permission - some access right. For example:

int fd = open("/etc/passwd", O_RDWR) ;
Now we have a token and a set of rights.

In Pony, every reference has both a type and a reference capability. In fact, the reference
capability is part of its type. These allow you to specify which of your objects can be shared
with other actors and allow the compiler to check that what you’re doing is concurrency safe.

85

http://www.ponylang.org/media/papers/opsla237-clebsch.pdf
https://www.ponylang.io/learn/#reference-capabilities
https://www.ponylang.io/learn/#reference-capabilities
https://ponylang.zulipchat.com/#narrow/stream/189985-beginner-help

Basic concepts

There are a few simple concepts you need to understand before reference capabilities will make
any sense. We've talked about some of these already, and some may already be obvious to you,
but it’s worth recapping here.

Shared mutable data is hard

The problem with concurrency is shared mutable data. If two different threads have access to
the same piece of data then they might try to update it at the same time. At best this can
lead to the two threads having different versions of the data. At worst the updates can interact
badly resulting in the data being overwritten with garbage. The standard way to avoid these
problems is to use locks to prevent data updates from happening at the same time. This causes
big performance hits and is very difficult to get right, so it causes lots of bugs.

Immutable data can be safely shared

Any data that is immutable (i.e. it cannot be changed) is safe to use concurrently. Since it is
immutable it is never updated and it’s the updates that cause concurrency problems.

Isolated data is safe

If a block of data has only one reference to it then we call it isolated. Since there is only one
reference to it, isolated data cannot be shared by multiple threads, so there are no concurrency
problems. Isolated data can be passed between multiple threads. As long as only one of them
has a reference to it at a time then the data is still safe from concurrency problems.

Isolated data may be complex

An isolated piece of data may be a single byte. But it can also be a large data structure with
multiple references between the various objects in that structure. What matters for the data to
be isolated is that there is only a single reference to that structure as a whole. We talk about
the isolation boundary of a data structure. For the structure to be isolated:

1. There must only be a single reference outside the boundary that points to an object inside.
2. There can be any number of references inside the boundary, but none of them must point
to an object outside.

Every actor is single threaded

The code within a single actor is never run concurrently. This means that, within a single actor,
data updates cannot cause problems. It’s only when we want to share data between actors that
we have problems.

OK, safely sharing data concurrently is tricky. How do reference capabilities help?

By sharing only immutable data and exchanging only isolated data we can have safe concurrent
programs without locks. The problem is that it’s very difficult to do that correctly. If you
accidentally hang on to a reference to some isolated data you’ve handed over or change something
you’ve shared as immutable then everything goes wrong. What you need is for the compiler to
force you to live up to your promises. Pony reference capabilities allow the compiler to do just
that.

86

Type qualifiers

If you've used C/C++, you may be familiar with const, which is a type qualifier that tells the
compiler not to allow the programmer to mutate something.

A reference capability is a form of type qualifier and provides a lot more guarantees than const
does!

In Pony, every use of a type has a reference capability. These capabilities apply to variables,
rather than to the type as a whole. In other words, when you define a class Wombat, you don’t
pick a reference capability for all instances of the class. Instead, Wombat variables each have
their own reference capability.

As an example, in some languages, you have to define a type that represents a mutable String
and another type that represents an immutable String. For example, in Java, there is a String
and a StringBuilder. In Pony, you can define a single class String and have some variables
that are String ref (which are mutable) and other variables that are String val (which are
immutable).

The list of reference capabilities

There are six reference capabilities in Pony and they all have strict definitions and rules on how
they can be used. We'll get to all of that later, but for now here are their names and what you
use them for:

Isolated, written iso. This is for references to isolated data structures. If you have an iso
variable then you know that there are no other variables that can access that data. So you can
change it however you like and give it to another actor.

Value, written val. This is for references to immutable data structures. If you have a val
variable then you know that no-one can change the data. So you can read it and share it with
other actors.

Reference, written ref. This is for references to mutable data structures that are not isolated,
in other words, “normal” data. If you have a ref variable then you can read and write the data
however you like and you can have multiple variables that can access the same data. But you
can’t share it with other actors.

Box. This is for references to data that is read-only to you. That data might be immutable
and shared with other actors or there may be other variables using it in your actor that can
change the data. Either way, the box variable can be used to safely read the data. This may
sound a little pointless, but it allows you to write code that can work for both val and ref
variables, as long as it doesn’t write to the object.

Transition, written trn. This is used for data structures that you want to write to, while also
holding read-only (box) variables for them. You can also convert the trn variable to a val
variable later if you wish, which stops anyone from changing the data and allows it be shared
with other actors.

Tag. This is for references used only for identification. You cannot read or write data using
a tag variable. But you can store and compare tags to check object identity and share tag
variables with other actors.

Note that if you have a variable referring to an actor then you can send messages to that actor
regardless of what reference capability that variable has.

87

How to write a reference capability
A reference capability comes at the end of a type. So, for example:

String iso // An isolated string
String trn // A transition string
String ref // A string reference
String val // A string value
String box // A string box

String tag // A string tag

reference-capabilities-string-capabilities.pony

What does it mean when a type doesn’t specify a reference capability? It means you
are using the default reference capability for that type, which is defined along with the type.
Here’s an example from the standard library:

class val String
reference-capabilities-string-default.pony

When we use a String we usually mean an immutable string value, so we make val the default
reference capability for String (but not necessarily for String constructors, see below). For
example, when we don’t specify the capability in the following code, the compiler understands
that we are using the default reference capability val specified in the type definition:

let a: String val = "Hello, world!"
let b: String = "I'm a wombat!" // Also a String val

reference-capabilities-default-vs-explicit.pony

So do I have to specify a reference capability when I define a type? Only if you want
to. There are sensible defaults that most types will use. These are ref for classes, val for
primitives (i.e. immutable references), and tag for actors.

How to create objects with different capabilities

When you write a constructor, by default, that constructor will either create a new object with
ref or tag as the capability. In the case of actors, the constructor will always create a tag. For
classes, it defaults to ref but you can create with other capabilities. Let’s take a look at an
example:

class Foo
let x: U32
new val create(x': U32) =>
X = x'
reference-capability-specificy-a-capability-other-than-the-default.pony

Now when you call Foo.create(1), you'll get a Foo val instead of Foo ref. But what if you
want to create both val and ref Foos? You could do something like this:

class Foo
let x: U32

new val create_val(x': U32) =>

X = x'

88

new ref create ref(x': U32) =>
X = x'

reference-capabilities-constructors-for-different-capabilities.pony

But, that’s probably not what you'd really want to do. Better to use the capabilities recovery
facilities of Pony that we’ll cover later in the Recovering Capabilities section.

Reference Capability Guarantees

Since types are guarantees, it’s useful to talk about what guarantees a reference capability
makes.

What is denied

We're going to talk about reference capability guarantees in terms of what’s denied. By this,
we mean: what can other variables not do when you have a variable with a certain reference
capability?

We need to distinguish between the actor that contains the variable in question and other actors.

This is important because data reads and writes from other actors may occur concurrently. If
two actors can both read the same data and one of them changes it then it will change under
the feet of the other actor. This leads to data-races and the need for locks. By ensuring this
situation can never occur, Pony eliminates the need for locks.

All code within any one actor always executes sequentially. This means that data accesses from
multiple variables within a single actor do not suffer from data-races.

Mutable reference capabilities

The mutable reference capabilities are iso, trn and ref. These reference capabilities are
mutable because they can be used to both read from and write to an object.

e If an actor has an iso variable, no other variable can be used by any actor to read from
or write to that object. This means an iso variable is the only variable anywhere in the
program that can read from or write to that object. It is read and write unique.

e If an actor has a trn variable, no other variable can be used by any actor to write to that
object, and no other variable can be used by other actors to read from or write to that
object. This means a trn variable is the only variable anywhere in the program that can
write to that object, but other variables held by the same actor may be able to read from
it. It is write unique.

o If an actor has a ref variable, no other variable can be used by other actors to read from
or write to that object. This means that other variables can be used to read from and
write to the object, but only from within the same actor.

Why can they be used to write? Because they all stop other actors from reading from or
writing to the object. Since we know no other actor will be reading, it’s safe for us to write to
the object, without having to worry about data-races. And since we know no other actor will
be writing, it’s safe for us to read from the object, too.

Immutable reference capabilities

The immutable reference capabilities are val and box. These reference capabilities are im-
mutable because they can be used to read from an object, but not to write to it.

89

/reference-capabilities/recovering-capabilities.md

e If an actor has a val variable, no other variable can be used by any actor to write to that
object. This means that the object can’t ever change. It is globally immutable.

e If an actor has a box variable, no other variable can be used by other actors to write
to that object. This means that other actors may be able to read the object and other
variables in the same actor may be able to write to it (although not both). In either case,
it is safe for us to read. The object is locally immutable.

Why can they be used to read but not write? Because these reference capabilities only
stop other actors from writing to the object. That means there is no guarantee that other actors
aren’t reading from the object, which means it’s not safe for us to write to it. It’s safe for more
than one actor to read from an object at the same time though, so we’re allowed to do that.

Opaque reference capabilities

There’s only one opaque reference capability, which is tag. A tag variable makes no guarantees
about other variables at all. As a result, it can’t be used to either read from or write to the
object; hence the name opaque.

It’s still useful though: you can do identity comparison with it, you can call behaviours on it,
and you can call functions on it that only need a tag receiver.

Why can’t tag be used to read or write? Because tag doesn’t stop other actors from
writing to the object. That means if we tried to read, we would have no guarantee that there
wasn’t some other actor writing to the object, so we might get a race condition.

Consume and Destructive Read

An important part of Pony’s capabilities is being able to say “I'm done with this thing.” We’ll
cover two means of handling this situation: consuming a variable and destructive reads.

Consuming a variable

Sometimes, you want to move an object from one variable to another. In other words, you don’t
want to make a second name for the object, you want to move the object from some existing
name to a different one.

You can do this by using consume. When you consume a variable you take the value out of it,
effectively leaving the variable empty. No code can read from that variable again until a new
value is written to it. Consuming a local variable or a parameter allows you to move it to a new
location, most importantly for iso and trn.

fun test(a: Wombat iso) =>
var b: Wombat iso = consume a // Allowed!

consume-and-destructive-read-consuming-a-variable.pony:5:6

The compiler is happy with that because by consuming a, you've said the value can’t be used
again and the compiler will complain if you try to.

fun test(a: Wombat iso) =>
var b: Wombat iso = consume a // Allowed!
var c: Wombat tag = a // Not allowed!

consume-and-destructive-read-consuming-a-variable-failure.pony:5:7

Here’s an example of that. When you try to assign a to ¢, the compiler will complain.

90

By default, a consume expression returns a type with the capability of the variable that you are
assigning to. You can see this in the example above, where we say that b is Wombat iso, and
as such the result of the consume expression is Wombat iso. We could also have said that b is a
Wombat val, but we can instead give an explicit reference capability to the consume expression:

fun test(a: AnIncrediblyLongTypeName iso) =>
var b = consume val a

consume-and-destructive-read-consuming-a-variable-and-change-its-reference-
capability.pony

The expression in line 2 of the example above is equivalent to saying var b: AnIncrediblyLongTypeName
val = consume a.

Can I consume a field? Definitely not! Consuming something means it is empty, that is, it
has no value. There’s no way to be sure no other alias to the object will access that field. If we
tried to access a field that was empty, we would crash. But there’s a way to do what you want
to do: destructive read.

Destructive read

There’s another way to move a value from one name to another. Earlier, we talked about how
assignment in Pony returns the old value of the left-hand side, rather than the new value. This
is called destructive read, and we can use it to do what we want to do, even with fields.

class Aardvark

var buddy: Wombat iso

new create() =>
buddy = recover Wombat end

fun ref test(a: Wombat iso) =>
var b: Wombat iso = buddy = consume a // Allowed!
consume-and-destructive-read-moving-a-value.pony
Here, we consume a, assign it to the field buddy, and assign the old value of buddy to b.

Why is it ok to destructively read fields when we can’t consume them? Because when
we do a destructive read, we assign to the field so it always has a value. Unlike consume, there’s
no time when the field is empty. That means it’s safe and the compiler doesn’t complain.

Recovering Capabilities

A recover expression lets you “lift” the reference capability of the result. A mutable reference
capability (iso, trn, or ref) can become any reference capability, and an immutable reference
capability (val or box) can become any immutable or opaque reference capability.

Why is this useful?

This most straightforward use of recover is to get an iso that you can pass to another actor.
But it can be used for many other things as well, such as:

e Creating a cyclic immutable data structure. That is, you can create a complex mutable
data structure inside a recover expression, “lift” the resulting ref to a val.

91

e “Borrow” an iso as a ref, do a series of complex mutable operations on it, and return it
as an iso again.
e “Extract” a mutable field from an iso and return it as an iso.

What does this look like?
The recover expression wraps a list of expressions and is terminated by an end, like this:
recover Array[String].create() end

recovering-capabilities-ref-to-iso.pony

This expression returns an Array[String] iso, instead of the usual Array[String] ref you
would get. The reason it is iso and not any of the other mutable reference capabilities is because
there is a default reference capability when you don’t specify one. The default for any mutable
reference capability is iso and the default for any immutable reference capability is val.

Here’s a more complicated example from the standard library:

recover
var s = String((prec + 1).max(width.max(31)))
var value = x

try
if value == 0 then
s.push(table(0)?)
else
while value != 0 do
let index = ((value = value / base) - (value * base))
s.push(table(index.usize())?)
end
end
end

_extend_digits(s, prec')
s.append (typestring)
s.append (prestring)
_pad(s, width, align, fill)
s
end
recovering-capabilities-format-int.pony
That’s from format/_FormatInt. It creates a String ref, does a bunch of stuff with it, and
finally returns it as a String iso.
You can also give an explicit reference capability:
let key = recover val line.substring(0, i).>strip() end

recovering-capabilities-with-explicit-reference-capability.pony:5:5

That’s from net/http/_PayloadBuilder. We get a substring of 1ine, which is a String iso”,
then we call strip on it, which returns itself. But since strip is a ref function, it returns itself
as a String ref” - so we use a recover val to end up with a String val.

92

How does this work?

Inside the recover expression, your code only has access to sendable values from the enclosing
lexical scope. In other words, you can only use iso, val and tag things from outside the recover
expression.

This means that when the recover expression finishes, any aliases to the result of the expression
other than iso, val and tag ones won’t exist anymore. That makes it safe to “lift” the reference
capability of the result of the expression.

If the recover expression could access non-sendable values from the enclosing lexical scope,
“lifting” the reference capability of the result wouldn’t be safe. Some of those values could “leak”
into an iso or val result, and result in data races.

Automatic receiver recovery

When you have an iso or trn receiver, you normally can’t call ref methods on it. That’s
because the receiver is also an argument to a method, which means both the method body and
the caller have access to the receiver at the same time. And that means we have to alias the
receiver when we call a method on it. The alias of an iso is a tag (which isn’t a subtype of
ref) and the alias of a trn is a box (also not a subtype of ref).

But we can get around this! If all the arguments to the method (other than the receiver, which
is the implicit argument being recovered) at the call-site are sendable, and the return type of
the method is either sendable or isn’t used at the call-site, then we can “automatically recover”
the receiver. That just means we don’t have to alias the receiver - and that means we can call
ref methods on an iso or trn, since iso and trn are both subtypes of ref.

Notice that this technique looks mostly at the call-site, rather than at the definition of the
method being called. That makes it more flexible. For example, if the method being called
wants a ref argument, and we pass it an iso argument, that’s sendable at the call-site, so we
can still do automatic receiver recovery.

This may sound a little complicated, but in practice, it means you can write code that treats
an iso mostly like a ref, and the compiler will complain when it’s wrong. For example:

let s = recover String end
s.append("hi")

recovering-capabilities-string-append.pony:3:4

Here, we create a String iso and then append some text to it. The append method takes a
ref receiver and a box parameter. We can automatically recover the iso receiver since we pass
a val parameter, so everything is fine.

Aliasing
Aliasing means having more than one reference to the same object, within the same actor.

This can be the case for a variable or a field.

In most programming languages, aliasing is pretty simple. You just assign some variable to
another variable, and there you go, you have an alias. The variable you assign to has the same
type (or some supertype) as what’s being assigned to it, and everything is fine.

In Pony, that works for some reference capabilities, but not all.

93

Aliasing and deny guarantees

The reason for this is that the iso reference capability denies other iso variables that point to
the same object. That is, you can only have one iso variable pointing to any given object. The
same goes for trn.

fun test(a: Wombat iso) =>
var b: Wombat iso = a // Not allowed!

aliasing-multiple-references-to-an-iso-object.pony:5:6

Here we have some function that gets passed an isolated Wombat. If we try to alias a by
assigning it to b, we’ll be breaking reference capability guarantees, so the compiler will stop us.
Instead, we can only store aliases that are compatible with the original capability.

What can I alias an iso as? Since an iso says no other variable can be used by any actor
to read from or write to that object, we can only create aliases to an iso that can neither read
nor write. Fortunately, we have a reference capability that does exactly that: tag. So we can
do this and the compiler will be happy:

fun test(a: Wombat iso) =>
var b: Wombat tag = a // Allowed!

aliasing-iso-to-tag.pony:5:6

What about aliasing trn? Since a trn says no other variable can be used by any actor to
write to that object, we need something that doesn’t allow writing but also doesn’t prevent our
trn variable from writing. Fortunately, we have a reference capability that does that too: box.
So we can do this and the compiler will be happy:

fun test(a: Wombat trn) =>
var b: Wombat box = a // Allowed!

aliasing-trn-to-box.pony:5:6

What about aliasing other stuff? For both iso and trn, the guarantees require that aliases
must give up on some ability (reading and writing for iso, writing for trn). For the other
capabilities (ref, val, box and tag), aliases allow for the same operations, so such a reference
can just be aliased as itself.

What counts as making an alias?
There are three things that count as making an alias:

1. When you assign a value to a variable or a field.

2. When you pass a value as an argument to a method.

3. When you call a method, an alias of the receiver of the call is created. It is accessible
as this within the method body.

In all three cases, you are making a new name for the object. This might be the name of a local
variable, the name of a field, or the name of a parameter to a method.

Alias types

Occasionally we’ll want to talk about the type of an alias generically. An alias type is a way of
saying “whatever we can safely alias this thing as”. We’ll discuss generic types later, which will
put this to use, but for now it will help us talk about aliases of capabilities in the future.

We indicate an alias type by putting a ! at the end. Here’s an example:

94

fun test(a: A) =>
var b: A! = a

aliasing-alias-types.pony

Here, we’re using A as a type variable, which we’ll cover later. So A! means “an alias of
whatever type A is”. We can also use it to talk about capabilities: we could have written the
statements about iso and trn as just iso! = tag and trn! = box.

Ephemeral types

In Pony, every expression has a type. So what’s the type of consume a? It’s not the same type
as a, because it might not be possible to alias a. Instead, it’s an ephemeral type. That is, it’s
a type for a value that currently has no name (it might have a name through some other alias,
but not the one we just consumed or destructively read).

To show a type is ephemeral, we put a ~ at the end. For example:

fun test(a: Wombat iso): Wombat iso™ =>
consume a

aliasing-ephemeral-types.pony

Here, our function takes an isolated Wombat as a parameter and returns an ephemeral isolated
Wombat.

This is useful for dealing with iso and trn types, and for generic types, but it’s also important
for constructors. A constructor always returns an ephemeral type, because it’s a new object.

Passing and Sharing References

Reference capabilities make it safe to both pass mutable data between actors and to share
immutable data amongst actors. Not only that, they make it safe to do it with no copying, no
locks, in fact, no runtime overhead at all.

Passing

For an object to be mutable, we need to be sure that no other actor can read from or write
to that object. The three mutable reference capabilities (iso, trn, and ref) all make that
guarantee.

But what if we want to pass a mutable object from one actor to another? To do that, we need
to be sure that the actor that is sending the mutable object also gives up the ability to both
read from and write to that object.

This is exactly what iso does. It is read and write unique, there can only be one reference at a
time that can be used for reading or writing. If you send an iso object to another actor, you
will be giving up the ability to read from or write to that object.

So I should use iso when I want to pass a mutable object between actors? Yes! If
you don’t need to pass it, you can just use ref instead.
Sharing

If you want to share an object amongst actors, then we have to make one of the following
guarantees:

95

1. Either no actor can write to the object, in which case any actor can read from it, or
2. Only one actor can write to the object, in which case other actors can neither read from
or write to the object.

The first guarantee is exactly what val does. It is globally immutable, so we know that no
actor can ever write to that object. As a result, you can freely send val objects to other actors,
without needing to give up the ability to read from that object.

So I should use val when I want to share an immutable object amongst actors?
Yes! If you don’t need to share it, you can just use ref instead, or box if you want it to be
immutable.

The second guarantee is what tag does. Not the part about only one actor writing (that’s
guaranteed by any mutable reference capability), but the part about not being able to read
from or write to an object. That means you can freely pass tag objects to other actors, without
needing to give up the ability to read from or write to that object.

What’s the point in sending a tag reference to another actor if it can’t then read
or write the fields? Because tag can be used to identify objects and sometimes that’s all
you need. Also, if the object is an actor you can call behaviours on it even though you only
have a tag.

So I should use tag when I want to share the identity of a mutable object amongst
actors? Yes! Or, really, the identity of anything, whether it’s mutable, immutable, or even an
actor.

Reference capabilities that can’t be sent

You may have noticed we didn’t mention trn, ref, or box as things you can send to other actors.
That’s because you can’t do it. They don’t make the guarantees we need in order to be safe.

So when should you use those reference capabilities?

e Use ref when you need to be able to change an object over time. On the other hand, if
your program wouldn’t be any slower if you used an immutable type instead, you may
want to use a val anyway.

e Use box when you don’t care whether the object is mutable or immutable. In other words,
you want to be able to read it, but you don’t need to write to it or share it with other
actors.

e Use trn when you want to be able to change an object for a while, but you also want to
be able to make it globally immutable later.

Capability Subtyping

Simple subtypes

Subtyping is about substitutability. That is, if we need to supply a certain type, what other
types can we substitute instead? Reference capabilities are one important component. We can
start by going through a few simpler cases, and then we will talk about the full chart.

First, let’s focus on the four capabilities ref, val, box, and tag. These have a very useful
property: they alias to themselves (and unalias to themselves, as well). This will make the
subtyping a lot simpler to work with. Afterwards we can talk about iso and trn, whose
subtyping is more intricate.

96

[13

To keep things brief, let’s add a small shorthand. We will use the <: symbol to mean “is a
subtype of”, or you can read it as “can be used as”.

e ref <: box. A ref can be written to and read from, while box only needs the ability to
read.

e val <: box. A val can be read from and is globally immutable, while box only requires
the ability to read.

e box <: tag. A box can be read from, while a tag doesn’t have any permissions at all. In
fact, anything can be used as tag.

That’s all there is to those four. A ref could have other mutable aliases, so it can’t become
val, which requires global uniqueness. Likewise, val can’t become ref since it can’t be used
to write (and there could be other val aliases requiring immutability).

Also keep in mind, subtyping is transitive. That means that since val <: box and box <: tag,
we also get val <: tag. The basic cases will be explained below, and transitivity can be used
to derive all other subtyping relationships for capabilities.

Subtypes of unique capabilities

When it comes to talking about unique capabilities, the situation is a bit more complex. With
variables, we only had the six basic capabilities, but we’re talking about expressions here. We
will have to work with aliased and unaliased forms of the capabilities.

From here, let’s talk about ephemeral capabilities. Remember that the way to get an ephemeral
capability is by unaliasing, that is, moving a value out of a named location with consume or
destructive read.

Subtyping here is surprisingly simple: iso” is a sub-capability of absolutely everything, and
trn” is a sub-capability of ref and val. Let’s go through the interesting cases again with these
two:

e iso” <: trn”. An iso” guarantees there’s no readable or writable aliases, whereas trn~
just needs no writable aliases.

e trn~ <: ref. A trn~ reference can be used to read and write, which is enough for ref.

e trn~ <: val. A trn” reference has no writable aliases. A val requires global immutabil-
ity, so we can forget our writable access in order to get val, since we know no other aliases
can write.

Temporary unique access

We talked about aliasing and consuming, but what about when we just use a variable without
making a new alias? If x is iso, what type do we give to the expression x? It would be pretty
useless if we could only use our iso variables as tag. We couldn’t modify fields or call any
methods.

What we get is the bare iso capability. Like ref, this allows us to read and write, but we will
have to keep the destination isolated. We will get into what kind of things we can do with it
later, but for now, we will talk about subtyping.

e iso” <: iso. As mentioned earlier, iso”™ can become anything. This isn’t enormously
useful, all told, but an iso™ expression with no other names is stronger than a expression
pointing to an existing iso name.

e trn~ <: trn. Similarly, we may use an expression that has no writable aliases, as an
expression which has one unique writeable alias.

97

e iso <: tag. We can’t coerce iso to anything else since the original name is still around,
but we can always drop down to tag (which is just iso!).

e trn <: box. This is quite similar, we can forget our ability to write and just get a new
box alias to store.

Combining Capabilities

When we talked about fields in the classes and variables chapters, we passed over the detail of
field capabilities. Fields, just like variables, have their own capabilities! A val field still refers
to something permanently immutable. A tag field still can’t be read from. An iso field is still
globally unique: it can only be accessed except through this field of a single instance.

Once we have fields with capabilities inside objects with capabilities, now we have two capabili-
ties to keep track of. When a field of an object is accessed or extracted, its reference capability
depends both on the reference capability of the field and the reference capability of the origin,
that is, the object the field is being read from. We have to pick a capability for the combination
that maintains the guarantees for both the origin reference capability, and for the capability
of the field.

Viewpoint adaptation

The process of combining origin and field capabilities is called viewpoint adaptation. That
is, the origin has a viewpoint, and its fields can be “seen” only from that viewpoint.

Let’s start with a table. This shows how a field of each capability looks when using an origin
of each capability.

iso field trn field ref field val field box field tag field

iso origin iso tag tag val tag tag
trn origin iso box box val box tag
ref origin iso trn ref val box tag
val origin val val val val val tag
box origin tag box box val box tag
tag origin n/a n/a n/a n/a n/a n/a

For example, if you have a trn origin and you read a ref field, you get a box result:

Explaining why

That table will seem totally natural to you, eventually. But probably not yet. To help it seem
natural, let’s walk through each cell in the table and explain why it is the way it is.

Reading from an iso variable

Anything read through an iso origin has to maintain the isolation guarantee that the origin has.
The key thing to remember is that the iso can be sent to another actor and it can also become
any other reference capability. So when we read a field, we need to get a result that won’t ever
break the isolation guarantees that the origin makes, that is, read and write uniqueness.

98

/types/classes.md
/expressions/variables.md

An iso field makes the same guarantees as an iso origin, so that’s fine to read. A val field is
globally immutable, which means it’s always ok to read it, no matter what the origin is (well,
other than tag).

Everything else, though, can break our isolation guarantees. That’s why other reference capa-
bilities are seen as tag: it’s the only type that is neither readable nor writable.

Reading from a trn variable

This is like iso, but with a weaker guarantee (write uniqueness as opposed to read and write
uniqueness). That makes a big difference since now we can return something readable when we
enforce our guarantees.

An iso field makes stronger guarantees than trn, and can’t alias anything readable inside the
trn origin, so it’s perfectly safe to read.

On the other hand, trn and ref fields have to be returned as box. It might seem a bit odd that
trn has to be returned as box, since after all it guarantees write uniqueness itself and we might
expect it to behave like iso. The issue is that trn, unlike iso, can alias with some box variables
in the origin. And that trn origin still has to make the guarantee that nothing else can write to
fields that it can read. On the other hand, trn still can’t be returned as val, because then we
might leave the original field in place and create a val alias, while that field can still be used
to write! So we have to view it as box.

Immutable and opaque capabilities, though, can never violate write uniqueness, so val, box,
and tag are viewed as themselves.

Reading from a ref variable

A ref origin doesn’t modify its fields at all. This is because a ref origin doesn’t make any
guarantees that are incompatible with its fields.

Reading from a val variable

A val origin is deeply and globally immutable, so all of its fields are also val. The only exception
is a tag field. Since we can’t read from it, we also can’t guarantee that nobody can write to it,
so it stays tag.

Reading from a box variable

A box variable is locally immutable. This means it’s possible that it may be mutated through
some other variable (a trn or a ref), but it’s also possible that our box variable is an alias of
some val variable.

When we read a field, we need to return a reference capability that is compatible with the field
but is also locally immutable.

An iso field is returned as a tag because no locally immutable reference capability can maintain
its isolation guarantees. A val field is returned as a val because global immutability is a stronger
guarantee than local immutability. A box field makes the same local immutability guarantee as
its origin, so that’s also fine.

For trn and ref we need to return a locally immutable reference capability that doesn’t violate
any guarantees the field makes. In both cases, we can return box.

99

Reading from a tag variable

This one is easy: tag variables are opaque! They can’t be read from.

Writing to the field of an object

Like reading the field of an object, writing to a field depends on the reference capability of the
object reference being stored and the reference capability of the origin object containing the
field. The reference capability of the object being stored must not violate the guarantees made
by the origin object’s reference capability. For example, a val object reference can be stored
in an iso origin. This is because the val reference capability guarantees that no alias to that
object exists which could violate the guarantees that the iso capability makes.

Here’s a simplified version of the table above that shows which reference capabilities can be
stored in the field of an origin object.

iso object trm object ref object val object box object tag object

iso origin
trn origin
ref origin
val origin
box origin
tag origin

The bottom half of this chart is empty, since only origins with a mutable capability can have
their fields modified.

Arrow Types aka Viewpoints

When we talked about reference capability composition and viewpoint adaptation, we
dealt with cases where we know the reference capability of the origin. However, sometimes we
don’t know the precise reference capability of the origin.

When that happens, we can write a viewpoint adapted type, which we call an arrow type
because we write it with an ->.

Using this-> as a viewpoint

A function with a box receiver can be called with a ref receiver or a val receiver as well since
those are both subtypes of box. Sometimes, we want to be able to talk about a type to take
this into account. For example:

class Wombat
var _friend: Wombat
fun friend(): this->Wombat => _friend
arrow-types-this.pony

Here, we have a Wombat, and every Wombat has a friend that’s also a Wombat (lucky Wombat).
In fact, it’s a Wombat ref, since ref is the default reference capability for a Wombat (since we

100

didn’t specify one). We also have a function that returns that friend. It’s got a box receiver
(because box is the default receiver reference capability for a function if we don’t specify it).

So the return type would normally be a Wombat box. Why’s that? Because, as we saw earlier,
when we read a ref field from a box origin, we get a box. In this case, the origin is the receiver,
which is a box.

But wait! What if we want a function that can return a Wombat ref when the receiver is a ref,
a Wombat val when the receiver is a val, and a Wombat box when the receiver is a box? We
don’t want to have to write the function three times.

We use this->! In this case, this->Wombat. It means “a Wombat ref as seen by the receiver”.

We know at the call site what the real reference capability of the receiver is. So when the
function is called, the compiler knows everything it needs to know to get this right.

Using a type parameter as a viewpoint

We haven’t covered generics yet, so this may seem a little weird. We’ll cover this again when we
talk about generics (i.e. parameterised types), but we’re mentioning it here for completeness.

Another time we don’t know the precise reference capability of something is if we are using a
type parameter. Here’s an example from the standard library:

class ListValues[A, N: ListNode[A] box] is Iterator [N->A]
arrow-types-type-parameter.pony

Here, we have a ListValues type that has two type parameters, A and N. In addition, N has a
constraint: it has to be a subtype of ListNode[A] box. That’s all fine and well, but we also
say the ListValues[A, N] provides Iterator [N->A]. That’s the interesting bit: we provide
an interface that let’s us iterate over values of the type N->A.

That means we’ll be returning objects of the type A, but the reference capability will be the
same as an object of type N would see an object of type A.

Using box-> as a viewpoint

There’s one more way we use arrow types, and it’s also related to generics. Sometimes we want
to talk about a type parameter as it is seen by some unknown type, as long as that type can
read the type parameter.

In other words, the unknown type will be a subtype of box, but that’s all we know. Here’s an
example from the standard library:

interface Comparable[A: Comparable[A] box]
fun eq(that: box->A): Bool => this is that
fun ne(that: box->A): Bool => not eq(that)

arrow-types-box.pony

Here, we say that something is Comparable[A] if and only if it has functions eq and ne and
those functions have a single parameter of type box->A and return a Bool. In other words,
whatever A is bound to, we only need to be able to read it.

101

Reference Capability Matrix

At this point, it’s quite possible that you read the previous sections in this chapter and are
still pretty confused about the relation between reference capabilities. It’s okay! We have all
struggled when learning this part of Pony, too. Once you start working on Pony code, you’ll
get a better intuition with them.

In the meantime, if you still feel like all these tidbits in the chapter are still scrambled in
your head, there is one resource often presented with Pony that can give you a more visual
representation: the reference capability matrix.

It is also the origin of the concept behind each capability in Pony, in the sense of how each capa-
bility denies certain properties to its reference — in other words, which guarantees a capability
makes. We will explain what that actually means before presenting the matrix.

Local and global aliases
Before anything else, we want to clarify what we mean by “local” and “global” aliases.

A local alias is a reference to the same variable that exists in the same actor. Whenever you
pass a value around, and it’s not the argument of an actor’s behavior, this is the kind of alias
we are working with.

On the other hand, a global alias is a reference to the same variable that can exist in a different
actor. That is, it describes the properties of how two or more actors could interact with the
same reference.

Each reference capability in Pony is actually a pair of local guarantees and global guarantees.
For instance, ref doesn’t deny any read/write capabilities inside the actor, but denies other
actors from reading or writing to that reference.

You may recall from the Reference Capability Guarantees section that mutable references cannot
be safely shared between actors, while immutable references can be read by multiple actors. In
general, global properties are always as restrictive or more restrictive than the local properties
to that reference - what is denied globally must also be denied locally. For example, it’s not
possible to write to an immutable reference in either a global or local alias. It’s also not possible
to read from or write to an opaque reference, tag. Therefore, some combinations of local and
global aliases are impossible, and have no designated capabilities.

Reference capability matrix

Without further ado, here’s the reference capability matrix:

Deny global Deny global write Don’t deny any
read/write aliases aliases global aliases
Deny local iso
read /write aliases
Deny local write trn val
aliases
Don’t deny any local ref box tag
aliases
(Mutable) (Immutable) (Opaque)

102

reference-capabilities/guarantees.md

In the context of the matrix, “denying a capability” means that any other alias to that reference
is not allowed to do that action. For example, since trn denies other local write aliases (but
allows reads), this is the only reference that allows writing to the object; and since it denies both
read and write aliases to other actors, it’s safe to write inside this actor, thus being mutable.
And since box does not break any guarantees that trn makes (local reads are allowed, but global
writes are forbidden), we can create box aliases to a trn reference.

You'll notice that the top-right side is empty. That’s because, as previously discussed, we cannot
make any local guarantees that are more restrictive than the global guarantees, or we’d end up
with invalid capabilities that could be written to in this actor but read somewhere else at the
same time.

The matrix also helps visualizing other concepts previously discussed in this chapter:

« Sendable capabilities. If we want to send references to a different actor, we must make
sure that the global and local aliases make the same guarantees. It’d be unsafe to send a
trn to another actor, since we could possibly hold box references locally. Only iso, val,
and tag have the same global and local restrictions — all of which are in the main diagonal
of the matrix.

o Ephemeral subtyping. If we have an ephemeral capability (for instance, iso™ after
consuming an isolated variable), we can be more permissive for the new alias, i.e. remove
restrictions, such as allowing local aliases with read capabilities, and receive the reference
into a trn~; or both read and write, which gives us ref. The same is true for more global
alias, and we can get val, box, or tag. Visually, this would be equivalent to walking
downwards and/or to-the-right starting from the capability in the matrix.

e Recovering capabilities. This is when we “lift” a capability, from a mutable reference to
iso or an immutable reference to val. The matrix equivalent would be walking upwards
starting from the capability — quite literally lifting in this case.

e Aliasing. With a bit more of imagination, it’s possible to picture aliasing iso and trn
as reflecting them on the secondary diagonal of the matrix onto tag and box, respectively.
The reason for that lies on which restrictions arise from the local guarantees. An iso
doesn’t allow different aliases to read or write, which tag enforces; and trn doesn’t allow
different aliases to write but allows them to do local reads, fitting box’s restrictions.

We want to emphasize that trying to apply the reference capability matrix to some capabilities
problems is not guaranteed to work (viewpoint adaptation is one example). The matrix is the
original definition of the reference capabilities, presented here as a mnemonic device. When-
ever you struggle with reference capabilities, we recommend that you reread the corresponding
section of this chapter to understand why something is not allowed by the compiler.

Object Capabilities

If you are reading this tutorial in order, you’ve just finished the reference capabilities chapter
and your brain probably hurts. We're sorry about that. Hopefully object capabilities, while a
new concept, are less mind bending.

We touched on object capabilities previously in the tutorial, this chapter will dig in more. So,
what is an object capability?

A capability is the ability to do “something”. Usually that “something” involves an external
resource that you might want access to; like the file system or the network. This is called an
object capability. Object capabilities have appeared in a number of programming languages

103

including E.

Object Capabilities
Pony’s capabilities-secure type system is based on the object-capability model. That sounds
complicated, but really it’s elegant and simple. The core idea is this:

A capability is an unforgeable token that (a) designates an object and (b) gives the
program the authority to perform a specific set of actions on that object.

So what’s that token? It’s an address. A pointer. A reference. It’s just.. an object.

How is that unforgeable?

Since Pony has no pointer arithmetic and is both type-safe and memory-safe, object references
can’t be “invented” (i.e. forged) by the program. You can only get one by constructing an object
or being passed an object.

What about the C-FFI? Using the C-FFI can break this guarantee. We’ll talk about the
C-FFI trust boundary later, and how to control it.

What about global variables?
They’re bad! Because you can get them without either constructing them or being passed them.

Global variables are a form of what is called ambient authority. Another form of ambient
authority is unfettered access to the file system.

Pony has no global variables and no global functions. That doesn’t mean all ambient authority
is magically gone - we still need to be careful about the file system, for example. Having no
global variables is necessary, but not sufficient, to eliminate ambient authority.

How does this help?

Instead of having permissions lists, access control lists, or other forms of security, the object-
capabilities model means that if you have a reference to an object, you can do things with that
object. Simple and effective.

There’s a great paper on how the object-capability model works, and it’s pretty easy reading:

Capability Myths Demolished

Capabilities and concurrency

The object-capability model on its own does not address concurrency. It makes clear what will
happen if there is simultaneous access to an object, but it does not prescribe a single method
of controlling this.

Combining capabilities with the actor-model is a good start, and has been done before in
languages such as E and Joule.

Pony does this and also uses a system of reference capabilities in the type system.

Delegating and restricting authority

Any interesting program will need to interact with the outside world, like accessing the network
or the file system, or by creating and communicating with other programs. We call ambient

104

https://en.wikipedia.org/wiki/E_%28programming_language%29
http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
http://erights.org/

authority all those rights implicitly granted to the program to make these things possible, and
because Pony makes this concept explicit, we need to take the time to talk about what it means
and how it works. In other languages like for example C, you can always attempt to do an
operation like I/O, and it will usually succeed save some runtime checks (your disk being full
might make an operation fail, for example). But in Pony, any piece of code interacting with the
outside world needs the authority to do so.

The operating system essentially knows nothing about the structure of any program it runs, in
particular it is ignorant of any Pony specific concepts. In order to impose that some code is
authorized for an operation like writing to disk, Pony requires a special argument to be passed,
a capability bearing the authority required for the task at hand. The type system guarantees
that inadequate capabilities for a task fail at compile time.

Recall the definition of capability from the Object Capabilities section:

A capability is an unforgeable token that (a) designates an object and (b) gives the
program the authority to perform a specific set of actions on that object.

In Pony, the Main actor is created with an Env object, which holds the unforgeable AmbientAuth
token in its root field. This value is the capability that represents the ambient authority given
to us by the system.

Here is a program that connects to example.com via TCP on port 80 and quits:
use "net"

class MyTCPConnectionNotify is TCPConnectionNotify
let _out: OutStream

new iso create(out: OutStream) =>
_out = out

fun ref connected(conn: TCPConnection ref) =>
_out.print("connected")
conn.close()

fun ref connect_failed(conn: TCPConnection ref) =>
_out.print("connect_failed")

actor Connect
new create(out: OutStream, auth: TCPConnectAuth) =>
TCPConnection(auth, MyTCPConnectionNotify(out), "example.com", "80")

actor Main
new create(env: Env) =>
Connect (env.out, TCPConnectAuth(env.root))

derived-authority-delegating-and-restricting-authority.pony

The Main actor authorizes the Connect actor by passing a TCPConnectAuth token created from
the ambient authority token in env.root. The ambient authority token is unforgeable since the
AmbientAuth constructor is private and the only existing instance is provided by the runtime
itself.

The Connect actor uses this derived authority when it creates a TCP connection:

105

/object-capabilities/object-capabilities.md

TCPConnection(auth, MyTCPConnectionNotify(out), "example.com", "80")
derived-authority-delegating-and-restricting-authority.pony:18:18

The TCPConnection requires an authority as first parameter, and since the compiler checks that
the correct type was passed, this guarantees that a TCPConnection can only be created by an
actor holding the required authorization.

The implementation of the TCPConnection constructor does not even use the authorization
parameter at run time, all it does is require it to be of the right type. The type checking done
by the compiler is sufficient for this guarantee.

Restrict, then delegate your authority

In order to handle our own code and that of others more safely, and also to understand our
code better, we want to split up the authority, and only grant the particular authority a piece
of code actually requires.

The first parameter of the TCPConnection constructor has the type TCPConnectAuth. This is
what we call “the most specific authority”. All classes in the standard library that require an
authority token only accept a single type of token; the token of “most specific authority”. In
the case of TCPConnection, this is TCPConnectAuth.

Now imagine we don’t trust the Connect actor, so we don’t want to provide it with more
authority than needed. For example, there is no point in granting it filesystem access, since it is
supposed to do network things (specifically, TCP), not access the filesystem. Instead of passing
the entire AmbientAuth (the root of all authority), we “downgrade” that to a TCPConnectAuth
(the most restrictive authority in net), pass it to the Connect actor, and have that pass it to
the TCPConnection constructor:

actor Connect
new create(out: OutStream, auth: TCPConnectAuth) =>
TCPConnection(auth, MyTCPConnectionNotify(out), "example.com", "80")

actor Main
new create(env: Env) =>
try Connect(env.out, TCPConnectAuth(env.root)) end

derived-authority-restrict-then-delegate-your-authority.pony:16:22

Now we are sure it cannot access the filesystem or listen on a TCP or UDP port. Pay close
mind to the authority that code you are calling is asking for. Never give AmbientAuth to any
code you do not trust completely both now and in the future. You should always create the
most specific authority and give the library that authority. If the library is asking for more
authority than it needs, do not use the library.

Authorization-friendly interface

Consider the above example again, but this time let’s think of the Connect actor being part of
a 3rd party package that we are building. Our goal is to write the actor in such a way that
users of our package can grant it only the authority necessary for it to function.

As the package author, it is then our responsibility to realize that the minimal authority pos-
sible is the TCPConnectAuth. We should only request TCPConnectAuth from our users. Our
current implementation already satisfies this requirement. Rather than requesting a less specific

106

authority like AmbientAuth from our users and creating the TCPConnectAuth in our library, we
only ask for the TCPConnetAuth that is required.

Authority hierarchies
Let’s have a look at the authorizations available in the standard library’s net package.

primitive NetAuth
new create(from: AmbientAuth)
None

Il
\4

primitive DNSAuth
new create(from: (AmbientAuth | NetAuth))
None

U
\4

primitive UDPAuth
new create(from: (AmbientAuth | NetAuth))
None

U
A\

primitive TCPAuth
new create(from: (AmbientAuth | NetAuth))
None

I
A\

primitive TCPListenAuth

new create(from: (AmbientAuth | NetAuth | TCPAuth)) =>
None
primitive TCPConnectAuth
new create(from: (AmbientAuth | NetAuth | TCPAuth)) =>
None
derived-authority-authority-hierarchies.pony
Look at the constructor for TCPConnectAuth:
new create(from: (AmbientAuth | NetAuth | TCPAuth)) =>
derived-authority-authority-hierarchies.pony:22:22
you might notice that this looks like a hierarchy of authorities:
AmbientAuth >> NetAuth >> TCPAuth >> TCPConnectAuth
where in this paragraph, “»” means “grants at least as much authority as”. In fact, the

AmbientAuth encompasses all ambient authority and is a strictly larger authority than NetAuth,
which grants access to the network, which is more powerful than TCPAuth which is restricted to
the TCP protocol. Finally, TCPConnectAuth is good only for creating a TCPConnection.

This hierarchy is established by means of the constructor of the weaker authority accepting one
of the stronger authorities, for example:

primitive TCPAuth
new create(from: (AmbientAuth | NetAuth)) =>
None

derived-authority-authority-hierarchies.pony:13:15

107

Where TCPAuth grants less authority than NetAuth. NetAuth can be used to create any of
the derived authorities DNSAuth, UDPAuth, TCPAuth, TCPListenAuth, TCPConnectAuth whereas
TCPAuth can only be used to derive TCPListenAuth and TCPConnectAuth.

Trust Boundary

We mentioned previously that the C-FFI can be used to break pretty much every guarantee
that Pony makes. This is because, once you’ve called into C, you are executing arbitrary
machine code that can stomp memory addresses, write to anything, and generally be pretty
badly behaved.

Trust boundaries

When we talk about trust, we don’t mean things you trust because you think they are perfect.
Instead, we mean things you have to trust in order to get things done, even though you know
they are imperfect.

In Pony, when you use the C-FFI, you are basically declaring that you trust the C code that’s
being executed. That’s fine, because you may need it to get work done. But what about trusting
someone else’s code to use the C-FFI? You may need to, but you definitely want to know that
it’s happening.

Safe packages

The normal way to handle that is to be sure you’re using just the code you need to use in your
program. Pretty simple! Don’t use some random package from the internet without looking at
the code and making sure it doesn’t do nasty FFI stuff.

But we can do better than that.
In Pony, you can optionally declare a set of safe packages on the ponyc command line, like this:
ponyc --safe=files:net:process my_project

Here, we are declaring that only the files, net and process packages are allowed to use C-FFI
calls. We’ve established our trust boundary: any other packages that try to use C-FFI calls
will result in a compile-time error.

Generics

Often when writing code you want to create similar classes or functions that differ only in the
type that they operate on. The classic example of this is collection classes. You want to be able
to create an Array that can hold objects of a particular type without creating an IntArray,
StringArray, etc. This is where generics step in.

Generic Classes

A generic class is a class that can have parameters, much like a method has parameters. The
parameters for a generic class are types, including their reference capability. Parameters are
introduced to a class using square brackets.

Take the following example of a non-generic class:

class Foo
var _c: U32

108

new create(c: U32) =>
c=c

fun get(): U32 => _c
fun ref set(c: U32) => c =c

actor Main
new create(env:Env) =>
let a = Foo(42)
env.out.print(a.get().string())
a.set(21)
env.out.print(a.get().string())

generics-foo-non-generic.pony

This class only works for the type U32, a 32 bit unsigned integer. We can make this work over
other types by making the type a parameter to the class. For this example it looks like:

class Foo[A: Any val]
var _c: A

new create(c: A) =>
c=c

fun get(): A => _c

fun ref set(c: A) => _c

I
(@]

actor Main
new create(env:Env) =>
let a = Foo[U32](42)
env.out.print(a.get().string())
a.set(21)

env.out.print(a.get().string())
let b = Foo[F32](1.5)
env.out.print(b.get().string())

let ¢ = Foo[String] ("Hello")
env.out.print(c.get().string())
generics-foo-with-any-val.pony

The first thing to note here is that the Foo class now takes a type parameter in square brackets,
[A: Any val]l. That syntax for the type parameter is:

Name: Constraint ReferenceCapability

In this case, the name is A, the constraint is Any and the reference capability is val. Any is
used to mean that the type can be any type - it is not constrained. The remainder of the class
definition replaces U32 with the type name A.

The user of the class must provide a type when referencing the class name. This is done when

109

creating it:

That tells the compiler what specific class to create, replacing A with the type provided. For
example, a Foo[String] usage becomes equivalent to:

class FooString

var _c: String val

new create(c: String val) =>
c=c

fun get(): String val => _c

fun ref set(c: String val) => _c =c

generics-foo-string.pony:1:9

Type parameter defaults

Sometimes the same parameter type is used over and over again, and it is tedious to always
specify it when using the generic class. The class Bar expects its type parameter to be a USize
val by default:

class Bar[A: Any box = USize vall

var _c: A

new create(c: A) =>
c=c

fun get(): A => _c

fun ref set(c: A) => ¢ = ¢
generics-type-parameter-defaults.pony:1:9

Now, when the default type parameter is the desired one, it can simply be omitted. But it is
still possible to be explicit or use a different type.

let a = Bar(42)
let b = Bar[USize] (42)
let ¢ Bar[F32] (1.5)

generics-type-parameter-defaults.pony:13:15
Note that we could simply write class Bar[A: Any box = USize] because val is the default
reference capability of the USize type.
Generic Methods

Methods can be generic too. They are defined in the same way as normal methods but have
type parameters inside square brackets after the method name:

primitive Foo
fun bar[A: Stringable val](a: A): String =>
a.string()

actor Main

110

new create(env:Env) =>
let a = Foo.bar[U32] (10)
env.out.print(a.string())

let b = Foo.bar[String] ("Hello")
env.out.print(b.string())
generics-generic-methods.pony

This example shows a constraint other than Any. The Stringable type is any type with a
string() method to convert to a String.

These examples show the basic idea behind generics and how to use them. Real world usage
gets quite a bit more complex and the following sections will dive deeper into how to use them.

Generics and Reference Capabilities

In the examples presented previously we’ve explicitly set the reference capability to val:
class Foo[A: Any vall
generics-foo-with-any-val.pony:1:1

If the capability is left out of the type parameter then the generic class or function can accept
any reference capability. This would look like:

class Foo[A: Anyl]
generics-and-reference-capabilities-explicit-constraint-and-default-capability.pony

It can be made shorter because Any is the default constraint, leaving us with:

class Fool[A]
generics-and-reference-capabilities-default-capability-and-constraint.pony

This is what the example shown before looks like but with any reference capability accepted:

// Note - this won't compile
class Foo[A]
var _c: A

new create(c: A) =>
c=c

fun get(): A => _c
fun ref set(c: A) => ¢ =c

actor Main
new create(env: Env) =>
let a = Foo[U32] (42)
env.out.print(a.get().string())
a.set(21)
env.out.print(a.get().string())

generics-and-reference-capabilities-accept-any-reference-capability.pony

111

Unfortunately, this doesn’t compile. For a generic class to compile it must be compilable for
all possible types and reference capabilities that satisfy the constraints in the type parameter.
In this case, that’s any type with any reference capability. The class works for the specific
reference capability of val as we saw earlier, but how well does it work for ref? Let’s expand
it and see:

// Note - this also won't compile
class Foo
var _c: String ref

new create(c: String ref) =>
_c=c
fun get(): String ref => _c

fun ref set(c: String ref) => _c = ¢

actor Main
new create(env: Env) =>
let a = Foo(recover ref String end)
env.out.print(a.get().string())
a.set(recover ref String end)
env.out.print(a.get().string())

generics-and-reference-capabilities-foo-ref.pony

This does not compile. The compiler complains that get () doesn’t actually return a String
ref, but this->String ref. We obviously need to simply change the type signature to fix this,
but what is going on here? this->String ref is an arrow type. An arrow type with “this->”
states to use the capability of the actual receiver (ref in our case), not the capability of the
method (which defaults to box here). According to viewpoint adaption this will be ref->ref
which is ref. Without this arrow type we would only see the field _c as box because we are in
a box method.

So let’s apply what we just learned:
class Foo

var _c: String ref

new create(c: String ref) =>
_c=c
fun get(): this->String ref => _c

fun ref set(c: String ref) => _c = ¢

actor Main
new create(env: Env) =>
let a = Foo(recover ref String end)
env.out.print(a.get().string())
a.set(recover ref String end)
env.out.print(a.get().string())

generics-and-reference-capabilities-foo-ref-and-this-ref.pony

112

/reference-capabilities/arrow-types.md
/reference-capabilities/combining-capabilities.md
/reference-capabilities/arrow-types.md

That compiles and runs, so ref is valid now. The real test though is iso. Let’s convert the
class to iso and walk through what is needed to get it to compile. We’ll then revisit our generic
class to get it working:

An iso specific class

// Note - this won't compile
class Foo
var _c: String iso

new create(c: String iso) =>
_c=c
fun get(): this->String iso => _c

fun ref set(c: String iso) => _c = ¢

actor Main
new create(env: Env) =>
let a = Foo(recover iso String end)
env.out.print(a.get().string())
a.set(recover iso String end)
env.out.print(a.get().string())

generics-and-reference-capabilities-foo-iso.pony
This fails to compile. The first error is:

main.pony:5:8: right side must be a subtype of left side
c=c

Info:
main.pony:4:17: String iso! is not a subtype of String iso: iso! is not a subtype of is
new create(c: String iso) =>

The error is telling us that we are aliasing the String iso - The ! in iso! means it is an alias
of an existing iso. Looking at the code shows the problem:

new create(c: String iso) =>
c=c

generics-and-reference-capabilities-foo-iso.pony:5:6

We have ¢ as an iso and are trying to assign it to _c. This creates two aliases to the same
object, something that iso does not allow. To fix it for the iso case we have to consume the
parameter. The correct constructor should be:

new create(c: String iso) =>
c = consume C

generics-and-reference-capabilities-foo-iso-consume-iso-constructor-parameter.pony:4:5

A similar issue exists with the set method. Here we also need to consume the variable c that
is passed in:

fun set(c: String iso) => _c = consume cC

113

generics-and-reference-capabilities-foo-iso-consume-iso-function-parameter.pony

Now we have a version of Foo that is working correctly for iso. Note how applying the arrow
type to the get method also works for iso. But here the result is a different one, by applying
viewpoint adaptation we get from ref->iso (with ref being the capability of the receiver, the
Foo object referenced by a) to iso. Through the magic of automatic receiver recovery we can
call the string method on it:

class Foo

var _c: String iso

new create(c: String iso) =>
Cc = consume C

fun get(): this->String iso => _c
fun ref set(c: String iso) => _c = consume c

actor Main
new create(env: Env) =>
let a = Foo(recover iso String end)
env.out.print(a.get().string())
a.set(recover iso String end)
env.out.print(a.get().string())

generics-and-reference-capabilities-foo-iso-consume-iso-constructor-parameter.pony

A capability generic class

Now that we have iso working we know how to write a generic class that works for iso and it
will work for other capabilities too:

class Fool[A]

var _c: A

new create(c: A) =>
c = consume C

fun get(): this->A => _c
fun ref set(c: A) => _c = consume c

actor Main
new create(env: Env) =>
let a = Foo[String iso] ("Hello".clone())
env.out.print(a.get().string())

let b = Foo[String ref] (recover ref "World".clone() end)
env.out.print(b.get().string())

let ¢ = Foo[U8] (42)
env.out.print(c.get().string())

generics-and-reference-capabilities-capability-generic-class.pony

114

/reference-capabilities/combining-capabilities.md
/reference-capabilities/recovering-capabilities.md

It’s quite a bit of work to get a generic class or method to work across all capability types, in
particular for iso. There are ways of restricting the generic to subsets of capabilities and that’s
the topic of the next section.

Constraints

Capability Constraints

The type parameter constraint for a generic class or method can constrain to a particular
capability as seen previously:

class Foo[A: Any val]
generics-foo-with-any-val.pony:1:1

Without the constraint, the generic must work for all possible capabilities. Sometimes you don’t
want to be limited to a specific capability and you can’t support all capabilities. The solution
for this is generic constraint qualifiers. These represent classes of capabilities that are accepted
in the generic. The valid qualifiers are:

Capabilities allowed Description
#read ref, val, box Anything you can read from
#send iso, val, tag Anything you can send to an actor
#share val, tag Anything you can send to more than one actor
#any iso, trn, ref, val, box, Default of a constraint
tag
#alias ref, val, box, tag Set of capabilities that alias as themselves (used by
compiler)

In the previous section, we went through extra work to support iso. If there’s no requirement
for iso support we can use #read and support ref, val, and box:

class Foo[A: Any #read]

var _c: A

new create(c: A) =>
c=c

fun get(): this->A => ¢
fun ref set(c: A) => c =c¢

actor Main
new create(env:Env) =>
let a = Foo[String ref] (recover ref "hello".clone() end)
env.out.print(a.get().string())

let b = Foo[String val] ("World")
env.out.print(b.get().string())

generic-constraints-foo-any-read.pony

115

Packages

Pony code is organised into packages. Each program and library is a single package, possibly
using other packages.

The package structure

The package is the basic unit of code in Pony. It corresponds directly to a directory in the file
system, all Pony source files within that directory are within that package. Note that this does
not include files in any sub-directories.

Every source file is within exactly one package. Hence all Pony code is in packages.

A package is usually split into several source files, although it does not have to be. This is purely
a convenience to allow better code organisation and the compiler treats all the code within a
package as if it were from a single file.

The package is the privacy boundary for types and methods. That is:

1. Private types (those whose name starts with an underscore) can be used only within the
package in which they are defined.

2. Private methods (those whose name starts with an underscore) can be called only from
code within the package in which they are defined.

It follows that all code within a package is assumed to know and trust, all the rest of the code
in the package.

There is no such concept as a sub-package in Pony. For example, the packages “foo/bar”

and “foo/bar/wombat” will, presumably, perform related tasks but they are two independent
packages. Package “foo/bar” does not contain package “foo/bar/wombat” and neither has
access to the private elements of the other.

Use Statement

To use a package in your code you need to have a use command. This tells the compiler to find
the package you need and make the types defined in it available to you. Every Pony file that
needs to know about a type from a package must have a use command for it.

Use commands are a similar concept to Python and Java “import”, C/C++ “#include” and
C# “using” commands, but not exactly the same. They come at the beginning of Pony files
and look like this:

use "collections"
use-statement-collections.pony

This will find all of the publicly visible types defined in the collections package and add them
to the type namespace of the file containing the use command. These types are then available
to use within that file, just as if they were defined locally.

For example, the standard library contains the package time. This contains the following
definition (among others):

primitive Time
fun now(): (I64, 1I64)

use-statement-time.pony

116

To access the now function just add a use command:

use "time"

class Foo
fun £() =>
(var secs, var nsecs) = Time.now()

use-statement-time-now.pony

Use names

As we saw above the use command adds all the public types from a package into the namespace
of the using file. This means that using a package may define type names that you want to use
for your own types. Furthermore, if you use two packages within a file they may both define
the same type name, causing a clash in your namespace. For example:

// In package A
class Foo

// In package B
class Foo

// In your code
use "packageA"
use "packageB"

class Bar
var _x: Foo

use-statement-use-names-conflict.pony

The declarations of _x is an error because we don’t know which Foo is being referred to. Actually
using ‘Foo’ is not even required, simply using both packageA and packageB is enough to cause
an error here.

To avoid this problem the use command allows you to specify an alias. If you do this then only
that alias is put into your namespace. The types from the used package can then be accessed
using this alias as a qualifier. Our example now becomes:

// In package A

class Foo

// In package B
class Foo

// In your code
use a = "packageA"
use b = "packageB"

class Bar
var _x: a.Foo // The Foo from package A
var _y: b.Foo // The Foo from package B

use-statement-use-names-resolution.pony

117

If you prefer you can give an alias to only one of the packages. Foo will then still be added to
your namespace referring to the unaliased package:

// In package A
class Foo

// In package B
class Foo

// In your code
use '"packageA"
use b = "packageB"

class Bar
var _x: Foo // The Foo from package A
var _y: b.Foo // The Foo from package B

use-statement-use-names-resolution-alternative.pony

Can I just specify the full package path and forget about the use command, like I
do in Java and C#7? No, you can’t do that in Pony. You can’t refer to one package based
on a use command for another package and you can’t use types from a package without a
use command for that package. Every package that you want to use must have its own use
command.

Are there limits on the names I can use for an alias? Use alias names have to start with
a lower case letter. Other than that you can use whatever name you want, as long as you're
not using that name for any other purpose in your file.

Scheme indicators

The string we give to a use command is known as the specifier. This consists of a scheme
indicator and a locator, separated by a colon. The scheme indicator tells the use command
what we want it to do, for example, the scheme indicator for including a package is “package”.
If no colon is found within the specifier string then the use command assumes you meant
“package”.

The following two use commands are exactly equivalent:

use "foo"
use "package:foo"

use-statement-scheme-indicators-optional-package-scheme-specifier.pony

If you are using a locator string that includes a colon, for example, an absolute path in Windows,
then you have to include the “package” scheme specifier:

use "C:/foo/bar" // Error, scheme "C" is unknown
use "package:C:/foo/bar" // OK

use-statement-scheme-indicators-required-package-scheme-specifier.pony

To allow use commands to be portable across operating systems, and to avoid confusion with
escape characters, ‘/’ should always be used as the path separator in use commands, even on
Windows.

118

Standard Library

The Pony standard library is a collection of packages that can each be used as needed to provide
a variety of functionality. For example, the files package provides file access and the collections
package provides generic lists, maps, sets and so on.

There is also a special package in the standard library called builtin. This contains various
types that the compiler has to treat specially and are so common that all Pony code needs to
know about them. All Pony source files have an implicit use "builtin" command. This means
all the types defined in the package builtin are automatically available in the type namespace
of all Pony source files.

Documentation for the standard library is available online

Testing

Unto all code, good or bad, comes the needs to test it. Verification that our code does what
we expect is very important. Over the last 20 years, there has been an explosion in different
testing techniques and tools. This chapter will get you going with PonyTest, the current Pony
testing tool.

Testing with PonyTest

PonyTest is Pony’s unit testing framework. It is designed to be as simple as possible to use,
both for the unit test writer and the user running the tests.

Each unit test is a class, with a single test function. By default, all tests run concurrently.

Fach test run is provided with a helper object. This provides logging and assertion functions.
By default log messages are only shown for tests that fail.

When any assertion function fails the test is counted as a fail. However, tests can also indicate
failure by raising an error in the test function.
Example program

To use PonyTest simply write a class for each test and a TestList type that tells the PonyTest
object about the tests. Typically the TestList will be Main for the package.

The following is a complete program with 2 trivial tests.
use '"pony_test"
actor Main is Testlist

new create(env: Env) =>
PonyTest (env, this)

new make() =>
None

fun tag tests(test: PonyTest) =>
test (_TestAdd)
test (_TestSub)

class iso _TestAdd is UnitTest

119

https://stdlib.ponylang.io/

fun name(): String => "addition"

fun apply(h: TestHelper) =>
h.assert_eq[U32] (4, 2 + 2)

class iso _TestSub is UnitTest
fun name(): String => "subtraction"

fun apply(h: TestHelper) =>
h.assert_eq[U32] (2, 4 - 2)

ponytest-example.pony

The make() constructor is not needed for this example. However, it allows for easy aggregation
of tests (see below) so it is recommended that all test Mains provide it.

Main.create() is called only for program invocations on the current package. Main.make() is
called during aggregation. If so desired extra code can be added to either of these constructors
to perform additional tasks.

Test names

Tests are identified by names, which are used when printing test results and on the command
line to select which tests to run. These names are independent of the names of the test classes
in the Pony source code.

Arbitrary strings can be used for these names, but for large projects, it is strongly recommended
to use a hierarchical naming scheme to make it easier to select groups of tests.

Aggregation

Often it is desirable to run a collection of unit tests from multiple different source files. For
example, if several packages within a bundle each have their own unit tests it may be useful to
run all tests for the bundle together.

This can be achieved by writing an aggregate test list class, which calls the list function for each
package. The following is an example that aggregates the tests from packages foo and bar.

use "pony_test"
use foo = "foo"
use bar = "bar"

actor Main is TestList
new create(env: Env) =>
PonyTest (env, this)

new make() =>
None

fun tag tests(test: PonyTest) =>
foo.Main.make() .tests(test)
bar.Main.make() .tests(test)

ponytest-aggregation.pony

120

Aggregate test classes may themselves be aggregated. Every test list class may contain any
combination of its own tests and aggregated lists.

Long tests

Simple tests run within a single function. When that function exits, either returning or raising
an error, the test is complete. This is not viable for tests that need to use actors.

Long tests allow for delayed completion. Any test can call long_test() on its TestHelper to
indicate that it needs to keep running. When the test is finally complete it calls complete ()
on its TestHelper.

The complete() function takes a Bool parameter to specify whether the test was a success. If
any asserts fail then the test will be considered a failure regardless of the value of this parameter.
However, complete () must still be called.

Since failing tests may hang, a timeout must be specified for each long test. When the test
function exits a timer is started with the specified timeout. If this timer fires before complete ()
is called the test is marked as a failure and the timeout is reported.

On a timeout, the timed_out () function is called on the unit test object. This should perform
whatever test specific tidy up is required to allow the program to exit. There is no need to call
complete() if a timeout occurs, although it is not an error to do so.

Note that the timeout is only relevant when a test hangs and would otherwise prevent the test
program from completing. Setting a very long timeout on tests that should not be able to hang
is perfectly acceptable and will not make the test take any longer if successful.

Timeouts should not be used as the standard method of detecting if a test has failed.

Exclusion groups

By default, all tests are run concurrently. This may be a problem for some tests, e.g. if they
manipulate an external file or use a system resource. To fix this issue any number of tests may
be put into an exclusion group.

No tests that are in the same exclusion group will be run concurrently.

Exclusion groups are identified by name, arbitrary strings may be used. Multiple exclusion
groups may be used and tests in different groups may run concurrently. Tests that do not
specify an exclusion group may be run concurrently with any other tests.

The command line option --sequential prevents any tests from running concurrently, regard-
less of exclusion groups. This is intended for debugging rather than standard use.

Tear down

Each unit test object may define a tear_down() function. This is called after the test has
finished allowing the tearing down of any complex environment that had to be set up for the
test.

The tear_down() function is called for each test regardless of whether it passed or failed. If a
test times out tear__down() will be called after timed_out () returns.

When a test is in an exclusion group, the tear_down() call is considered part of the tests
run. The next test in the exclusion group will not start until after tear_down() returns on the
current test.

121

The test’s TestHelper is handed to tear_down() and it is permitted to log messages and call
assert functions during tear down.

Additional resources

You can learn more about PonyTest specifics by checking out the API documentation. There’s
also a testing section in the Pony Patterns book.

Testing with PonyCheck

PonyCheck is Pony’s property based testing framework. It is designed to work seamlessly with
PonyTest, Pony’s unit testing framework. How is property based testing different than unit
testing? Why does Pony include both?

In traditional unit testing, it is the duty and burden of the developer to provide and craft
meaningful input examples for the unit under test (be it a class, a function or whatever) and
check if some output conditions hold. This is a tedious and error-prone activity.

Property based testing leaves generation of test input samples to the testing engine which
generates random examples taken from a description how to do so, so called Generators. The
developer needs to define a Generator and describe the condition that should hold for each and
every input sample.

Property based testing first came up as QuickCheck in Haskell. It has the nice property of
automatically inferring Generators from the type of the property parameter, the test input
sample.

PonyCheck is heavily inspired by QuickCheck and other great property based testing libraries,
namely:

e Hypothesis
o Theft
e ScalaCheck

Usage

Writing property based tests in PonyCheck is done by implementing the trait Propertyl. A
Propertyl needs to define a type parameter for the type of the input sample, a Generator and
a property function. Here is a minimal example:

use "pony_check"
class _MyFirstProperty is Propertyl[String]

fun name(): String =>
"my_first_property"

fun gen(): Generator[String] =>
Generators.ascii()

fun property(argl: String, ph: PropertyHelper) =>
ph.assert_eq[String] (argl, argl)

ponycheck-usage.pony:2:12

122

https://stdlib.ponylang.io/pony_test--index/
http://patterns.ponylang.io/testing.html
http://patterns.ponylang.io/
testing/ponytest.md
https://web.archive.org/web/20250602233329/http://www.cse.chalmers.se/~rjmh/QuickCheck/
https://github.com/HypothesisWorks/hypothesis-python
https://github.com/silentbicycle/theft
https://www.scalacheck.org/
https://stdlib.ponylang.io/pony_check-Property1
https://stdlib.ponylang.io/pony_check-Property1
https://stdlib.ponylang.io/pony_check-Generator

A Propertyl needs a name for identification in test output. We created a Generator by using
one of the many convenience factory methods and combinators defined in the Generators
primitive and we used PropertyHelper to assert on a condition that should hold for all samples

Below are two classic list reverse properties from the QuickCheck paper adapted to Pony arrays:

use "pony_check"
use "collections"

class _ListReverseProperty is Propertyl[Array[USize]]
fun name(): String => "list/reverse"

fun gen(): Generator[Array[USizel] =>
Generators.seq_of [USize, Array[USize]] (Generators.usize())

fun property(argl: Array[USize], ph: PropertyHelper) =>
ph.assert_array_eq[USize] (argl, argl.reverse().reverse())

class _ListReverseOneProperty is Propertyl[Array[USize]]
fun name(): String => "list/reverse/one"

fun gen(): Generator[Array[USizel] =>
Generators.seq_of [USize, Array[USize]] (Generators.usize() where min = 1, max = 1)

fun property(argl: Array[USize], ph: PropertyHelper) =>
ph.assert_array_eq[USize] (argl, argl.reverse())

ponycheck-usage-quickcheck.pony

Integration with PonyTest

PonyCheck properties need to be executed. The test runner for PonyCheck is PonyTest. To in-
tegrate Property1 into PonyTest, Propertyl needs to be wrapped inside a PropertylUnitTest
and passed to the PonyTest apply method as a regular PonyTest UnitTest:

It is also possible to integrate any number of properties directly into one UnitTest using the
PonyCheck.for_all convenience function:

class _ListReverseProperties is UnitTest
fun name(): String => "list/properties"

fun apply(h: TestHelper) 7 =>
let genl = Generators.seq_of [USize, Array[USize]] (Generators.usize())
PonyCheck.for_all[Array[USize]] (genl, h) ({
(argl: Array[USize], ph: PropertyHelper) =>
ph.assert_array_eq[USize] (argl, argl.reverse() .reverse())
b
let gen2 = Generators.seq_of [USize, Array[USize]] (1, Generators.usize())
PonyCheck.for_all[Array[USize]] (gen2, h) ({
(argl: Array[USize], ph: PropertyHelper) =>
ph.assert_array_eq[USize] (argl, argl.reverse())

b
ponycheck-ponytest-for-all.pony

123

https://stdlib.ponylang.io/pony_check-Generators
https://stdlib.ponylang.io/pony_check-PropertyHelper
https://stdlib.ponylang.io/pony_test--index
https://stdlib.ponylang.io/pony_check-Property1
https://stdlib.ponylang.io/pony_test--index
https://stdlib.ponylang.io/pony_check-Property1UnitTest
https://stdlib.ponylang.io/pony_test-UnitTest
https://stdlib.ponylang.io/pony_test-UnitTest
https://stdlib.ponylang.io/pony_check-PonyCheck

Additional resources

You can learn more about PonyCheck specifics by checking out the API documentation. You
can also find some example tests in ponyc GitHub repository.

To learn more about testing in Pony in general, there’s a testing section in the Pony Patterns
book which isn’t specific to PonyCheck.

C-FFI

Pony supports integration with other native languages through the Foreign Function Interface
(FFI). The FFI library provides a stable and portable APT and high-level programming interface
allowing Pony to integrate with native libraries easily.

Note that calling C (or other low-level languages) is inherently dangerous. C code fundamentally
has access to all memory in the process and can change any of it, either deliberately or due to
bugs. This is one of the language’s most useful, but also most dangerous, features. Calling well
written, bug-free, C code will have no ill effects on your program. However, calling buggy or
malicious C code or calling C incorrectly can cause your Pony program to go wrong, including
corrupting data and crashing. Consequently, all of the Pony guarantees regarding not crashing,
memory safety and concurrent correctness can be voided by calling FFI functions.

Calling C from Pony

FFI is built into Pony and native libraries may be directly referenced in Pony code. There is
no need to code or configure bindings, wrappers or interfaces.

Safely does it

It is VERY important that when calling FFI functions you MUST get the parameter
and return types right. The compiler has no way to know what the native code expects and
will just believe whatever you do. Errors here can cause invalid data to be passed to the FFI
function or returned to Pony, which can lead to program crashes.

To help avoid bugs, Pony requires you to specify the type signatures of FFI functions in advance.
While the compiler will trust that you specify the correct types in the signature, it will check
the arguments you provide at each FFT call site against the declared signature. This means
that you must get the types right only once, in the declaration. A declaration won’t help you
if the argument types the native code expects are different to what you think they are, but it
will protect you against trivial mistakes and simple typos.

Here’s an example of an FFI signature and call from the standard library:

use @_mkdir[I32] (dir: Pointer[U8] tag) if windows
use @mkdir[I32] (path: Pointer[U8] tag, mode: U32) if not windows

class val FilePath

fun val mkdir(must_create: Bool = false): Bool =>
/] ...

let r = ifdef windows then
@_mkdir(element.cstring())

else
O@mkdir(element.cstring(), Ox1FF)

end

124

https://stdlib.ponylang.io/pony_check--index/
https://github.com/ponylang/ponyc/tree/main/examples/pony_check
https://github.com/ponylang/ponyc
http://patterns.ponylang.io/testing.html
http://patterns.ponylang.io/

calling-c-file-path.pony

FFI functions have the @ symbol before its name, and FFI signatures are declared using the
use command. The types specified here are considered authoritative, and any FFI calls that
use different parameter types will result in a compile error.

The use @ command can take a condition just like other use commands. This is useful in this
case, since the _mkdir function only exists in Windows.

If the name of the C function that you want to call is also a reserved keyword in Pony (such as
box), you will need to wrap the name in double quotes (@"box"). If you forget to do so, your
program will not compile.

An FFI signature is public to all Pony files inside the same package, so you only need to write
them once.

C types

Many C functions require types that don’t have an exact equivalent in Pony. A variety of
features is provided for these.

For FFI functions that have no return value (i.e. they return void in C) the return value specified
should be None.

In Pony, a String is an object with a header and fields, while in C a char* is simply a pointer
to character data. The .cstring() function on String provides us with a valid pointer to hand
to C. Our mkdir example above makes use of this for the first argument.

Pony classes and structs correspond directly to pointers to the class or struct in C.

For C pointers to simple types, such as U64, the Pony Pointer[] polymorphic type should
be used, with a tag reference capability. To represent void* arguments, you should use the
Pointer [None] tag type, which will allow you to pass a pointer to any type, including other
pointers. This is needed to write declarations for certain POSIX functions, such as memcpy:

// The C type is void* memcpy(void *restrict dst, const void *restrict src, size_t n);
use @memcpy[Pointer[U8]] (dst: Pointer[None] tag, src: Pointer[None] tag, n: USize)

// Now we can use memcpy with any Pointer type
let out: Pointer[Pointer[U8] tagl] tag = // ...
let outlen: Pointer[U8] tag = // ...

let ptr: Pointer[U8] tag = // ...

let size: USize = // ...

VA

@memcpy (out, addressof ptr, size.bitwidth() / 8)
@memcpy (outlen, addressof size, 1)

calling-c-memcpy.pony

When dealing with void* return types from C, it is good practice to try to narrow the type
down to the most specific Pony type that you expect to receive. In the example above, we chose
Pointer [U8] as the return type, since we can use such a pointer to construct Pony Arrays and
Strings.

To pass pointers to values to C the addressof operator can be used (previously &), just like
taking an address in C. This is done in the standard library to pass the address of a U32 to an
FFI function that takes a int* as an out parameter:

125

/appendices/keywords.md

use @frexp[F64] (value: F64, exponent: Pointer[U32])
/] ...

var exponent: U32 = 0

var mantissa = @frexp(this, addressof exponent)

calling-c-addressof.pony

Get and Pass Pointers to FFI

If you want to receive a pointer to an opaque C type, using a pointer to a primitive can be
useful:

use @XOpenDisplay[Pointer[_XDisplayHandle]] (name: Pointer[U8] tag)
use QeglGetDisplay[Pointer[_EGLDisplayHandle]] (disp: Pointer[_XDisplayHandle])

primitive _XDisplayHandle
primitive _EGLDisplayHandle

let x_dpy = @XOpenDisplay(Pointer [U8])
if x_dpy.is_null() then

env.out.print ("XOpenDisplay failed")
end

let e_dpy = @eglGetDisplay(x_dpy)

if e_dpy.is_null() then
env.out.print("eglGetDisplay failed")

end

calling-c-pointer-to-opaque-c-type.pony

The above example would also work if we used Pointer [None] for all the pointer types. By
using a pointer to a primitive, we are adding a level of type safety, as the compiler will ensure
that we don’t pass a pointer to any other type as a parameter to eglGetDisplay. It is important
to note that these primitives should not be used anywhere except as a type parameter
of Pointer[], to avoid misuse.

Working with Structs: from Pony to C

Like we mentioned above, Pony classes and structs correspond directly to pointers to the class
or struct in C. This means that in most cases we won’t need to use the addressof operator
when passing struct types to C. For example, let’s imagine we want to use the writev function
from Pony on Linux:

As you saw, a I0Vec instance in Pony is equivalent to struct iovec*. In some cases, like the
above example, it can be cumbersome to define a struct type in Pony if you only want to use
it in a single place. You can also use a pointer to a tuple type as a shorthand for a struct: let’s
rework the above example:

In the example above, the type Pointer[(Pointer[U8] tag, USize)] tag is equivalent to
the I0Vec struct type we defined earlier. That is, a struct type is equivalent to a pointer to a
tuple type with the fields of the struct as elements, in the same order as the original struct type
defined them.

Can I pass struct types by value, instead of passing a pointer? Not at the moment. This
is a known limitation of the current FFI system, but it is something the Pony team is interested

126

in fixing. If you’d like to work on adding support for passing structs by value, contact us on
the Zulip.

Working with Structs: from C to Pony

A common pattern in C is to pass a struct pointer to a function, and that function will fill
in various values in the struct. To do this in Pony, you make a struct and then use a
NullablePointer, which denotes a possibly-null type:

A NullablePointer type can only be used with structs, and is only intended for output
parameters (like in the example above) or for return types from C. You don’t need to use a
NullablePointer if you are only passing a struct as a regular input parameter.

If you are using a C function that returns a struct, remember, that the C function needs to
return a pointer to the struct. The following in Pony should be read as returns a pointer to
struct Rect:

use @from_c[Rect] ()
struct Rect

var length: Ul6
var width: U16

calling-c-from-c-struct.pony:1:5

As we saw earlier, you can also use a Pointer [(U16, U16)] as well. It is the equivalent to our
Rect.

Can I return struct types by value, instead of passing a pointer? Not at the moment.
This is a known limitation of the current FFI system, but it is something the Pony team is
interested in fixing. If you’d like to work on adding support for returning structs by value,
contact us on the Zulip.

Return-type Polymorphism

We mentioned before that you should use the Pointer[None] type in Pony when dealing
with values of void* type in C. This is very useful for function parameters, but when we
use Pointer [None] for the return type of a C function, we won’t be able to access the value
that the pointer points to. Let’s imagine a generic list in C:

struct List;

struct List* list_create();
void list_free(struct List* list);

void list_push(struct List* list, void *data);

void* list_pop(struct List* list);

Following the advice from previous sections, we can write the following Pony declarations:
use @list_create[Pointer[_List]] ()

use Q@list_free[None] (1ist: Pointer[_List])

use @list_push[None] (1ist: Pointer[_List], data: Pointer[Nonel)
use @list_pop[Pointer[None]] (1ist: Pointer[_List])

primitive _List

127

https://ponylang.zulipchat.com/#narrow/stream/192795-contribute-to-Pony
https://ponylang.zulipchat.com/#narrow/stream/192795-contribute-to-Pony
https://ponylang.zulipchat.com/#narrow/stream/192795-contribute-to-Pony

calling-c-generic-list.pony
We can use these declarations to create lists of different types, and insert elements into them:

struct Point
var x: U64
var y: U64

nn
o O

let list_of_points = @list_create()
@list_push(list_of_points, NullablePointer[Point].create(Point))

let list_of_strings = @list_create()

@list_push(list_of_strings, "some data".cstring())
calling-c-different-types-of-lists.pony

We can also get elements out of the list, although we won’t be able to do anything with them:

// Compiler error: couldn't find 'x' in 'Pointer'’
let point_x = @list_pop(list_of_points)
point.x

// Compiler error: wanted Pointer[U8 val] ref~, got Pointer[None val] ref

let head = String.from_cstring(@list_pop(list_of_strings))
calling-c-access-list-entry-without-return-type.pony

We can fix this problem by adding an explicit return type when calling 1ist_pop:

// OK
let point = @list_pop[Point] (1ist_of_points)
let x_coord = point.x

// OK
let pointer = @list_pop[Pointer[U8]] (1ist_of_strings)
let data = String.from_cstring(pointer)

calling-c-access-list-entry-with-explicit-return-type.pony

Note that the declaration for list_pop is still needed: if we don’t add an explicit return type
when calling 1ist_pop, the default type will be the return type of the declaration.

When specifying a different return type for an FFI function, make sure that the new type is
compatible with the type specified in the declaration.

Variadic C functions

Some C functions are variadic, that is, they can take a variable number of parameters. To
interact with these functions, you should also specify that fact in the FFI signature:

In the example above, the compiler will type-check the first argument to printf, but will not
be able to check any other argument, since it lacks the necessary type information. It is very
important that you use ... in the FFI signature if the corresponding C function is variadic: if
you don’t, the compiler might generate a program that is incorrect or crash on some platforms
while appearing to work correctly on others.

128

FFI functions raising errors

Some FFI functions might raise Pony errors. Functions in existing C libraries are very unlikely
to do this, but support libraries specifically written for use with Pony may well do.

FFI calls to functions that might raise an error must mark it as such by adding a 7 after its
declaration. The FFI call site must mark it as well. For example:

use @pony_os_send[USize] (event: AsioEventID, buffer: Pointer[U8] tag, size: USize) 7
/] ...

// May raise an error

@pony_os_send(_event, data.cpointer(), data.size()) 7

calling-c-fli-functions-raising-errors.pony

If you're writing a C library that wants to raise a Pony error, you should do so using the
pony_error function. Here’s an example from the Pony runtime:

// In pony.h
PONY_API void pony_error();

// In socket.c
PONY_API size_t pony_os_send(asio_event_t* ev, const charx buf, size_t len)
{

ssize_t sent = send(ev->fd, buf, len, 0);

if (sent < 0)

{
if (errno == EWOULDBLOCK || errno == EAGAIN)
return O;
pony_error () ;
+

return (size_t)sent;

}

A function that calls the pony_error function should only be called from inside a try block
in Pony. If this is not done, the call to pony_error will result in a call to C’s abort function,
which will terminate the program.

Type signature compatibility

Since type signature declarations are scoped to a single Pony package, separate packages might
define different FFI signatures for the same C function. In this case, as well as the case where
you specify a different return type for an FFI call, the compiler will make sure that all calls and
declarations are compatible with each other. Two functions are compatible if their arguments
and return types are compatible. Two types are compatible with each other if they have the
same ABI size and they can be safely cast to each other. The compiler allows the following type
casts:

o Any struct type can be cast to any other struct (as they are both pointer types)
e Pointers and integers can be cast to each other.

Consider the following example:

129

// In library lib_a
use O@memcmp[I32] (dst: Pointer[None] tag, src: Pointer[None] tag, len: USize)

// In library lib_b
use O@memcmp[I32] (dst: Pointer[None] tag, src: USize, len: U64)

calling-c-type-signature-compatibility.pony

These two declarations have different types for the src and len parameters. In the case of
src, the types are compatible since an integer can be cast as a pointer, and vice versa. For
len, the types will not be compatible on 32 bit platforms, where USize is equivalent to U32.
It is important to take the rules around casting into account when writing type declarations
in libraries that will be used by others, as it will avoid any compatibility problems with other
libraries.

Calling FF1 functions from Interfaces or Traits

We mentioned in the previous section that FFI declarations are scoped to a single Pony pack-
age, with separate packages possibly defining different FFI signatures for the same C function.
Importing an external package will not import any FFI declarations, since any name collisions
would produce multiple declarations for the same C function name, and thus deciding which
declaration to use would be ambiguous.

Given the above fact, if you define any default methods (or behaviors) in an interface or trait,
you will not be able to perform an FFI call from them. For example, the code below will fail to
compile:

use @printf[I32] (fmt: Pointer[None] tag, ...)

trait Foo
fun apply() =>
// Error: Can't call an FFI function in a default method or behavior
@printf("Hello from trait Foo\n".cstring())

actor Main is Foo
new create(env: Env) =>
this.apply O

calling-c-default-method-in-trait.pony
If the trait Foo above was part of the public API of a package, allowing its apply method to

perform an FFI call would render Foo unusable for any external users, given that the declaration
for printf would not be in scope.

Fortunately, avoiding this limitation is relatively painless. Whenever you need to call an FFI
function from a default method implementation, consider moving said function to a separate

type:

use O@printf[I32] (fmt: Pointer[None] tag, ...)
trait Foo
fun apply() =>
// OK

Printf("Hello from trait Foo\n")
primitive Printf

130

fun apply(str: String) =>
@printf (str.cstring())

actor Main is Foo
new create(env: Env) =>
this.apply O

calling-c-default-method-in-primitive.pony

By making the change above, we avoid exposing the call to printf to any consumers of our
trait, thus making it usable by external users.

Linking to C Libraries

If Pony code calls FFI functions, then those functions, or rather the libraries containing them,
must be linked into the Pony program.

Use for external libraries

To link an external library to Pony code another variant of the use command is used. The 1ib
specifier is used to tell the compiler you want to link to a library. For example:

use "lib:foo"
linking-c-use-lib-foo.pony

As with other use commands a condition may be specified. This is particularly useful when the
library has slightly different names on different platforms.

Here’s a real example from the standard library:

use "path:/usr/local/opt/libressl/lib" if osx
use "lib:ssl" if not windows

use "lib:crypto" if not windows

use "lib:1ibssl-32" if windows

use "lib:libcrypto-32" if windows

use @SSL_load_error_strings[None] ()
use Q@SSL_library_init[I32] ()

primitive _SSLInit

nnn

This initialises SSL when the program begins.
nnn

fun _init() =>
@SSL_load_error_strings()
@SSL_library_init()

linking-c-use-with-condition.pony

On Windows, we use the libraries libssl-32 and libcrypto-32 and on other plat-
forms we use ssl and crypto. These contain the FFI functions SSL_library_init and
SSL_load_error_strings (amongst others).

By default the Pony compiler will look for the libraries to link in the standard places, however,
that is defined on the build platform. However, it may be necessary to look in extra places.

131

The use "path:..." command allows this. The specified path is added to the library search
paths for the remainder of the current file. The example above uses this to add the path
/usr/local/opt/libressl/1ib for MacOS. This is required because the library is provided by
brew, which installs things outside the standard library search paths.

If you are integrating with existing libraries, that is all you need to do.

C ABI

The FFI support in Pony uses the C application binary interface (ABI) to interface with na-
tive code. The C ABI is a calling convention, one of many, that allow objects from different
programming languages to be used together.

Writing a C library for Pony
Writing your own C library for use by Pony is almost as easy as using existing libraries.

Let’s look at a complete example of a C function we may wish to provide to Pony. Let’s consider
a pure Pony implementation of a Jump Consistent Hash:

// Jump consistent hashing in Pony, with an inline pseudo random generator
// https://arxiv.org/abs/1406.2294

fun jch(key: U64, buckets: U32): I32 =>

var k = key
var b = I64(0)
var j = 164(0)

while j < buckets.i64() do

b =]

k = (k * 2862933555777941757) + 1

j = ((b+ 1).£64(0) * (I64(1 << 31).f64(0) / ((k >> 33) + 1).£f64())).i64()
end

c-abi-jump-consistent-hashing.pony:5:18

Let’s say we wish to compare the pure Pony performance to an existing C function with the
following header:

#ifndef __JCH_H_
#define __JCH_H_

extern "C"

{

int32_t jch_chash(uint64_t key, uint32_t num_buckets) ;
}
#endif

Note the use of extern "C". If the library is built as C++ then we need to tell the compiler
not to mangle the function name, otherwise, Pony won’t be able to find it. For libraries built
as C, this is not needed, of course.

The implementation of the previous header would be something like:

132

https://arxiv.org/abs/1406.2294

#include <stdint.h>

// A fast, minimal memory, consistent hash algorithm
// https://arziv.org/abs/1406.229/
int32_t jch_chash(uint64_t key, uint32_t num_buckets)
{

int b = -1;

uint64_t j = 0;

do {
b=3;
key = key * 2862933555777941757ULL + 1;

j = (b + 1) *x ((double) (1LL << 31) / ((double) (key >> 33) + 1));
} while(j < num_buckets);

return (int32_t)b;
}

We need to compile the native code to a shared library. This example is for MacOS. The exact
details may vary on other platforms.

clang -fPIC -Wall -Wextra -03 -g -MM jch.c >jch.d
clang —fPIC -Wall -Wextra -03 -g -c -o jch.o jch.c
clang -shared -Im -o libjch.dylib jch.o

The Pony code to use this new C library is just like the code we’ve already seen for using C
libraries.

nnn

This is an example of Pony integrating with native code via the built-in FFI
support

use "lib:jch"
use "collections"
use @jch_chash[I32] (hash: U64, bucket_size: U32)

actor Main
var _env: Env

new create(env: Env) =>
_env = env

let bucket_size: U32 = 1000000

_env.out.print("C implementation:")
for i in Range[U64] (1, 20) do
let hash = Q@jch_chash(i, bucket_size)
_env.out.print(i.string() + ": " + hash.string())
end

_env.out.print("Pony implementation:")
for i in Range[U64] (1, 20) do

133

let hash = jch(i, bucket_size)
_env.out.print(i.string() + ": " + hash.string())
end

fun jch(key: U64, buckets: U32): I32 =>

var k = key
var b = I64(0)
var j = I64(0)

while j < buckets.i64() do

b =]

k = (k * 2862933555777941757) + 1

j = (b + 1).£64(0) * (I64(1 << 31).£f64(0) / ((k >> 33) + 1).£f64())).i64()
end
b.i320)

c-abi-pony-use-native-jump-consistent-hashing-c-implementation.pony

We can now use ponyc to compile a native executable integrating Pony and our C library. And
that’s all we need to do.

Callbacks

Some C APIs let the programmer specify functions that should be called to do pieces of work. For
example, the SQLite API has a function called sqlite3_exec that executes an SQL statement
and calls a function given by the programmer on each row returned by that statement. The
functions that are supplied by the programmer are known as “callback functions”. Some specific
Pony functions can be passed as callback functions.

Bare functions

Classic Pony functions have a receiver, which acts as an implicit argument to the function.
Because of this, classic functions can’t be used as callbacks with many C APIs. Instead, you
can use bare functions, which are functions with no receiver.

You can define a bare function by prefixing the function name with the @ symbol.

class C
fun @callback() =>

c-ffi-callbacks-bare-functions.pony
The function can then be passed as a callback to a C API with the addressof operator.
@setup_callback(addressof C.callback)
c-fli-callbacks-bare-functions-pass-to-c-api.pony

Note that it is possible to use an object reference instead of a type as the left-hand side of the
method access.

Since bare methods have no receiver, they cannot reference the this identifier in their body
(either explicitly or implicitly through field access), cannot use this viewpoint adapted types,
and cannot specify a receiver capability.

134

Bare lambdas

Bare lambdas are special lambdas defining bare functions. A bare lambda or bare lambda type
is specified using the same syntax as other lambda types, with the small variation that it is
prefixed with the @ symbol. The underlying value of a bare lambda is equivalent to a C function
pointer, which means that a bare lambda can be directly passed as a callback to a C function.
The partial application of a bare method yields a bare lambda.

let callback = @{() => ... }
@setup_callback(callback)

c-fhi-callbacks-bare-lambda-callback.pony
Bare lambdas can also be used to define structures containing function pointers. For example:

struct S
var fun_ptr: e{()}

c-fli-callbacks-bare-lambda-struct.pony
This Pony structure is equivalent to the following C structure:

struct S

{
void (*fun_ptr) O ;
+;

In the same vein as bare functions, bare lambdas cannot specify captures, cannot use this
neither as an identifier nor as a type, and cannot specify a receiver capability. In addition, a
bare lambda object always has a val capability.

Classic lambda types and bare lambda types can never be subtypes of each other.

An example

Consider SQLite, mentioned earlier. When the client code calls sqlite3_exec, an SQL query
is executed against a database, and the callback function is called for each row returned by the
SQL statement. Here’s the signature for sqlite3_exec:

typedef int (*sqlite3_callback) (void*,int,char*#*, charxx*);

SQLITE_API int SQLITE_STDCALL sqlite3_exec(

sqlite3 *db, /* The database on which the S{L executes */
const char *zSql, /* The SQL to be executed */
sqlite3_callback xCallback, /* Invoke this callback routine */

void *pArg, /* First argument to zCallback() */

char **pzErrMsg /* Write error messages here */

)

{

xCallback(pArg, nCol, azVals, azCols)

}

sqlite3_callback is the type of the callback function that will be called by sqlite3_exec for
each row returned by the sql statement. The first argument to the callback function is the

135

pointer pArg that was passed to sqlite3_exec, the second argument is the number of columns
in the row being processed, the third argument is data for each column, and the fourth argument
is the name of each column.

Here’s the skeleton of some Pony code that uses sqlite3_exec to query an SQLite database,
with examples of both the bare method way and the bare lambda way:

use @sqlite3_exec[I32](db: Pointer[None] tag, sql: Pointer[U8] tag,
callback: Pointer[None], data: Pointer[None], err_msg: Pointer[Pointer[U8] tag] tag)

class SQLiteClient
fun client_code() =>

@sqlite3_exec(db, sql.cstring(), addressof this.method_callback,
this, addressof zErrMsg)

fun Omethod_callback(client: SQLiteClient, argc: I32,
argv: Pointer[Pointer[U8]], azColName: Pointer[Pointer[U8]]): I32
=>

c-fli-callbacks-sqlite3-callback.pony

use @sqlite3_exec[I32] (db: Pointer[None] tag, sql: Pointer[U8] tag,
callback: Pointer[None], data: Pointer[None], err_msg: Pointer[Pointer[U8] tagl] tag)

class SQLiteClient
fun client_code() =>

let lambda_callback =
@{(client: SQLiteClient, argc: I32, argv: Pointer[Pointer[U8]],
azColName: Pointer[Pointer[U8]]): I32
=>

@sqlite3_exec(db, sql.cstring(), lambda_callback, this,
addressof zErrMsg)

c-fhi-callbacks-sqlite3-callback-2.pony

Focusing on the callback-related parts, the callback function is passed using addressof
this.method_callback (resp. by directly passing the bare lambda) as the third argument to
sqlite3_exec. The fourth argument is this, which will end up being the first argument when
the callback function is called. The callback function is called in sqlite3_exec by the call to
xCallback.

Gotchas

Every programming language has gotchas. Those “what the heck” moments that make us all
laugh when someone does a presentation on them. They often shoot to the top of sites like
Hacker News and Reddit. It’s all in good fun, except, it isn’t. Each of those gotchas and the

136

laughs we get from them, hide someone’s pain. This chapter covers some common Pony gotchas
that new Pony programmers often stumble across with painful results. Probably the best way
to approach this chapter is to imagine each section has a giant flashing “DO NOT DO THIS”
sign.

Divide by Zero

What’s 1 divided by 0?7 How about 10 divided by 07 What is the result you get in your favorite
programming language?

In math, divide by zero is undefined. There is no answer to that question as the expression 1/0
has no meaning. In many programming languages, the answer is a runtime exception that the
user has to handle. In Pony, things are a bit different.

Divide by zero in Pony

In Pony, integer division by zero results in zero. That’s right,
let x = I64(1) / 164(0)
divide-by-zero.pony:3:3

results in O being assigned to x. Baffling right? Well, yes and no. From a mathematical
standpoint, it is very much baffling. From a practical standpoint, it is very much not.

While Pony has Partial division:

let x =
try
I164(1) /7 164(0)
else
// handle division by zero
end

divide-by-zero-partial.pony

Defining division as partial leads to code littered with trys attempting to deal with the possi-
bility of division by zero. Even if you had asserted that your denominator was not zero, you’d
still need to protect against divide by zero because, at this time, the compiler can’t detect that
value dependent typing.

Pony also offers Unsafe Division, which declares division by zero as undefined, as in C:

// the value of x is undefined
let x = I64(1) /~ 164(0)
divide-by-zero-unsafe.pony

But declaring this case as undefined does not help us out here. As a programmer you’d still
need to guard that case in order to not poison your program with undefined values or risking
terminating your program with a SIGFPE. So, in order to maintain a practical API and avoid
undefined behaviour, normal division on integers in Pony is defined to be 0. To avoid Os silently
creeping through your divisions, use Partial or Checked Division.

Divide by zero on floating points

In conformance with IEEE 754, floating point division by zero results in inf or —inf, depending
on the sign of the numerator.

137

/expressions/arithmetic.md#partial-and-checked-arithmetic
/expressions/arithmetic.md#unsafe-integer-arithmetic
/expressions/arithmetic.md#partial-and-checked-arithmetic

If you can assert that your denominator cannot be 0, it is possible to use Unsafe Division to
gain some performance:

let x = F64(1.5) /~ F64(0.5)

divide-by-zero-floats.pony:4:4

Garbage Collection

There’s a common GC anti-pattern that many new Pony programmers accidentally stumble
across. Usually, this results in a skyrocketing of memory usage in their test program and
questions on Zulip as to why Pony isn’t working correctly. It is, in fact, working correctly,
albeit not obviously.

Garbage Collection in the world at large

Garbage collection, in most languages, can run at any time. Your program can be paused so
that memory can be freed up. This sucks if you want predictable completion of sections of code.
Most of the time, your function will finish in less than a millisecond, but every now and then,
it’s paused during execution to GC. There are advantages to this approach. Whenever you run
low on memory, the GC can attempt to free some memory and get you more. In general, this
is how people expect Pony’s garbage collector to work. As you might guess though, it doesn’t
work that way.

Garbage Collection in Pony

Garbage collection is never attempted on any actor while it is executing a behavior. This
gives you very predictable performance when executing behaviors, but also makes it easy to
grab way more memory than you intend to. Let’s take a look at how that can happen via the
“long-running behavior problem.”

Long running behaviors and memory
Here’s a typical “I'm learning Pony” program:
use "collections"
actor Main
new create(env: Env) =>
for i in Range(1l, 2_000_000) do

. something that uses up heap ...
end

garbage-collection.pony

This program will never garbage collect before exiting. create is run as a behavior on actors,
which means that no garbage collection will occur while it’s running. Long loops in behaviors
are a good way to exhaust memory. Don’t do it. If you want to execute something in such a
fashion, use a Timer.

Scheduling

The Pony scheduler is not preemptive. This means that your actor has to yield control of the
scheduler thread in order for another actor to execute. The normal way to do this is for your

138

/expressions/arithmetic.md#floating-point
https://stdlib.ponylang.io/time-Timer/

behavior to end. If your behavior doesn’t end, you will continue to monopolize a scheduler
thread and bad things will happen.

FFI and monopolizing the scheduler

An easy way to monopolize a scheduler thread is to use the FFI facilities of Pony to kick off
code that doesn’t return for an extended period of time. You do not want to do this. Do not
call FFI code that doesn’t return in a reasonable amount of time.

Long running behaviors

Another way to monopolize a scheduler thread is to write a behavior that never exits or takes
a really long time to exit.

be bad_citizen() =>
while true do
_env.out.print("Never gonna give you up. Really gonna make you cry")
end

scheduling.pony

That is some seriously bad citizen code that will hog a scheduler thread forever. Call that
behavior a few times and your program will grind to a halt. If you find yourself writing code
with loops that will run for a long time, stop and rethink your design. Take a look at the Timer
class from the standard library. Combine that together with a counter in your class and you
can execute the same behavior repeatedly while yielding your scheduler thread to other actors.

Function Call Side Effects

Consider the following code:

class Foo
fun fn(x: U64) => None

actor Main
new create(env: Env) =>
var x: U64 = 0
try foo()?7.fn(x = 42) end
env.out.print(x.string())

fun foo(): Foo 7 => error

function-call-side-effects.pony

What do you think it will print? Probably 0 right? Or maybe you realized this code is in the
gotchas section so it must be 42. If you went with 42, you’d be right. Why?

Expressions for arguments in function calls are evaluated before the expression for the function
receiver. The use of assignment expressions like x = 42 is quite rare so we don’t think many
folks will be bitten by this. However, it’s definitely something you want to be aware of. Also
remember that if fn were to be called, it would be called with 0 (the result of the assignment
expression).

139

https://stdlib.ponylang.io/time-Timer/

Recursion

Recursive functions in Pony can cause many problems. Every function call in a program adds
a frame on the system call stack, which is bounded. If the stack grows too big it will overflow,
usually crashing the program. This is an out-of-memory type of error and it cannot be prevented
by the guarantees offered by Pony.

If you have a heavy recursive algorithm, you must take some precautions in your code to avoid
stack overflows. Most recursive functions can be easily transformed into tail-recursive function
which are less problematic. A tail-recursive function is a function in which the recursive call is
the last instruction of the function. Here is an example with a factorial function:

fun recursive_factorial(x: U32): U32 =>
if x == 0 then
1
else
x * recursive_factorial(x - 1)
end

fun tail_recursive_factorial(x: U32, y: U32): U32 =>
if x == 0 then
y
else
tail_recursive_factorial(x - 1, x * y)
end

recursion.pony:6:18

The compiler can optimise a tail-recursive function to a loop, completely avoiding call stack
growth. Note that this is an optimisation which is only performed in release builds (i.e. builds
without the -d flag passed to ponyc.) If you need to avoid stack growth in debug builds as well
then you have to write your function as a loop manually.

If the tail-recursive version of your algorithm isn’t practical to implement, there are other ways
to control stack growth depending on your algorithm. For example, you can implement your
algorithm using an explicit stack data structure instead of implicitly using the call stack to store
data.

Note that light recursion usually doesn’t cause problems. Unless your amount of recursive calls
is in the hundreds, you’re unlikely to encounter this problem.

Where Next?

Hey, congratulations! You’ve made it to the end of the Pony tutorial. So, what do you do
next? Well, there’s actually a bit more here. Check out the appendices as they have some
useful information that doesn’t fit else. After that, here are a few resources that you can look
into.

“Learn” section the Pony website

If you haven’t already visited it, the learn section of the Pony website has a lot of good content
to help you get started with Pony. In particular, materials to help you grapple with reference
capabilities.

“Learn” on the Pony website

140

/appendices/index.md
https://www.ponylang.io/learn/

Planet Pony

We don’t have an automatic blog aggregator but wish we did. In the meantime, we have a
hand-curated list of videos, blog posts etc that would be of interest to members of the Pony
community. Just beware when you are checking out older posts, it’s quite possible that their
examples no longer compile as Pony development is currently moving very quickly.

Planet Pony

Pony Patterns

One of the hardest parts of learning a new language is figuring out how to do various different
“everyday” tasks. We have a cookbook style book called “Pony Patterns” that enumerates a
variety of problems you might encounter and idiomatic ways to solve those problems. The
amount of content is still somewhat small but growing all the time.

Pony Patterns

Standard Library Documentation

You are going to need to learn the standard library. Some of us prefer to open the source code
and explore. If you prefer an online experience, we maintain a version of the standard library
documentation online. And you don’t have to worry about it going out of date as it is updated
on every commit to the ponyc main branch.

Standard Library Documentation

Pony Zulip
Pony Zulip

Pony Virtual Users’ Group

The Pony Virtual Users’ Group has occasional presentations that you can attend “in person” or
catch later via the recorded video. Join our Zulip community to stay up to date on upcoming
meetings. All the previous videos are available via the Main Ponylang Vimeo.

A final word

We're immensely happy that you have taken the time to start learning Pony. It’s still a new
and immature language with plenty of sharp pointy edges. You are going to get frustrated at
times. Don’t worry, it has happened to all of us. Drop by one of our support channels and
someone will try to lend a hand. We want you to succeed. The more people who succeed with
Pony, the more the community grows and the better it is for all of us.

Welcome to the community! Have fun!

Appendices

Welcome to the appendices; the land of misshapen and forgotten documentation. Ok, not really
forgotten just.. ‘lesser’ sounds wrong. Some of this material could get some loving and be
promoted to a full chapter, some are always going to be an appendix, some might be worthy
of a short book unto itself. Right now though it lives here, have a look through. You’ll find
a lexicon of standard Pony terminology, a symbol lookup cheat sheet that can help you locate
documentation on all our funny symbols like ™, ! and much more.

141

https://www.ponylang.io/community/planet-pony/
http://patterns.ponylang.io
https://stdlib.ponylang.io/
https://ponylang.zulipchat.com
https://ponylang.zulipchat.com/#narrow/stream/189932-announce/topic/VUG
https://vimeo.com/ponylang

PONYPATH

When searching for Pony packages, ponyc checks both the installation directory (where the stan-
dard libraries reside) and any directories listed in the optional environment variable PONYPATH.
Adding to PONYPATH

Assuming you just placed new Pony code under a directory called pony in your home directory
here is how to inform ponyc that the directory contains Pony code via adding it to PONYPATH.
Unix/Mac

Edit/add the rc file corresponding to your chosen shell (echo $SHELL will tell you what shell
you are running). For example, if using bash, add the following to your ~/.bashrc:

export PONYPATH=$PONYPATH:$HOME/pony

(Then run source ~/.bashrc to add this variable to a running session. New terminal session
will automatically source ~/.bashrc.)

Windows

1. Create folder at C:\Users\<yourusername>\pony.

2. Right click on “Start” and click on “Control Panel”. Select “System and Security”, then
click on “System”.

3. From the menu on the left, select the “Advanced systems settings”.

4. Click the “Environment Variables” button at the bottom.

5. Click “New” from the “User variables” section.

6. Type PONYPATH into the “Variable name” field.

7. Type %PONYPATHY ; ,USERPROFILEY\pony into the “Variable value” field.

8. Click OK.

You can also add to PONYPATH from the command prompt via:
setx PONYPATH %PONYPATHY;%USERPROFILEY\pony

Lexicon

Words are hard. We can all be saying the same thing but do we mean the same thing? It’s
tough to know. Hopefully, this lexicon helps a little.

Terminology
Braces: { }. Synonymous with curly brackets.

Brackets: This term is ambiguous. In the UK it usually means () in the US is usually means
[]. It should, therefore, be avoided for use for either of these. Can be used as a general term
for any unspecified grouping punctuation, including { }.

Compatible type: Two types are compatible if there can be any single object which is an
instance of both types. Note that a suitable type for the single object does not have to have
been defined, as long as it could be. For example, any two traits are compatible because a
class could be defined that provides both of them, even if such a class has not been defined.
Conversely, no two classes can ever be compatible because no object can be an instance of both.

142

Compound type: A type combining multiple other types, i.e. union, intersection, and tuple.
Opposite of a single type.

Concrete type: An actor, class or primitive.
Curly brackets: { }. Synonymous with braces.

Declaration and definition: synonyms for each other, we do not draw the C distinction
between forward declarations and full definitions.

Default method body: Method body defined in a trait and optionally used by concrete types.
Entity: Top level definition within a file, i.e. alias, trait, actor, class, primitive.

Explicit type: An actor, class or primitive.

Member: Method or field.

Method: Something callable on a concrete type/object. Function, behaviour or constructor.

Override: When a concrete type has its own body for a method with a default body provided
by a trait.

Parentheses: (). Synonymous with round brackets.

Provide: An entity’s usage of traits and the methods they contain. Equivalent to implements
or inherits from.

Round brackets: (). Synonymous with parentheses.

Single type: Any type which is not defined as a collection of other types. Actors, classes,
primitives, traits and structural types are all single types. Opposite of a compound type.

Square brackets: []

Trait clash: A trait clashes with another type if it contains a method with the same name,
but incompatible signature as a method in the other type. A clashing trait is incompatible with
the other type. Traits can clash with actors, classes, primitives, intersections, structural types
and other traits.

Symbol Lookup Cheat Sheet

Pony, like just about any other programming language, has plenty of odd symbols that make
up its syntax. If you don’t remember what one means, it can be hard to search for them. Below
you’ll find a table with various Pony symbols and what you should search the tutorial for in
order to learn more about the symbol.

Symbol Search Keywords

! Alias
-> Arrow type, viewpoint
> Chaining
Ephemeral

Q FFI

Intersection

=> Match arrow

~ Partial application

? Partial function

' Prime

143

Symbol Search Keywords

<: Subtype

Here is a more elaborate explanation of Pony’s use of special characters: (a line with (2) or (3)
means an alternate usage of the symbol of the previous line)

Symbol Usage

, to separate parameters in a function signature, or the items of a tuple
(1) to call a field or a function on a variable (field access or method call)
(2) to qualify a type/method with its package name
> to call a method on an object and return the receiver (chaining)
: used as alternative name in parameters (prime)
" to delineate a literal string
tn to delineate a documentation string
((1) start of line: start of a tuple
(2) middle of line: method call
O (1) parentheses, for function or behavior parameters
(2) making a tuple (values separated by ,)
(3) making an enumeration (values separated by |)
)
)
)
)

[(1) start of line: start of an array literal
(2) middle of line: generic formal parameters

] (1) to indicate a generic type, for example Range [U64]
(2) to indicate the return type of an FFI function call

{3 a function type

: (1) after a variable: is followed by the type name
(2) to indicate a function return type
(3) a type constraint

; only used to separate expressions on the same line

1) (destructive) assignment

2) in: use alias = package name

3) supply default argument for method

4) supply default type for generics

1) boolean negation

2) a type that is an alias of another type

1) partial functions

2) a call to a C function that could raise an error

1) start of line: unary negation

2)

1) to indicate a private variable, constructor, function, behavior

2) to ignore a tuple item in a pattern match

~ partial application

an ephemeral type

| (1) separates the types in an enumeration (the value can be any of these types)
(2) starts a branch in a match

middle of line: subtraction

(
(
(
(
(
(
? (
(
(
(
(
(

& (1) separates the types in a complex type (the value is of all of these types)
(2) intersection

Q FFI call

// comments

/x x/ multi-line or block comments

144

Symbol Usage
=> (1) start of a function body

(2) starts the code of a matching branch
-> (1) arrow type

(2) viewpoint
i where i = 1,2,.. means the item at position i in the tuple
<: “is a subtype of” or “can be substituted for”
Keywords

This listing explains the usage of every Pony keyword.

Keyword Usage

actor defines an actor

as conversion of a value to another Type (can raise an error)

be behavior, executed asynchronously

box default reference capability — object is readable, but not writable
break to step out of a loop statement

class defines a class

compile_errorwill provoke a compile error
compile_intrimaplementation is written in C and not available as Pony code

continue
consume
digestof

do
else
elseif
embed
end

error
for
fun
if

ifdef
iftype

in
interface
is

isnt
iso
let
match
new
not

continues a loop with the next iteration

move a value to a new variable, leaving the original variable empty

create a USize value that summarizes the Pony object, similar to a Java
object’s hashCode () value.

loop statement, or after a with statement

conditional statement in if, for, while, repeat, try (as a catch block), match
conditional statement, also used with ifdef

embed a class as a field of another class

ending of: if then, ifdef, while do, for in, repeat until, try, object,
recover, match

raises an error

loop statement

define a function, executed synchronously

(1) conditional statement

(2) to define a guard in a pattern match

when defining a build flag at compile time: ponyc —D “foo”

type conditional statement iftype A <: B checks if A is a subtype of B
used in a for in - loop statement

used in structural subtyping

(1) used in nominal subtyping

(2) in type aliasing

(3) identity comparison

negative identity comparison

reference capability — read and write uniqueness

declaration of immutable variable: you can’t rebind this name to a new value
pattern matching

constructor

logical negation

145

Keyword

Usage

object to make an object literal
primitive declares a primitive type
recover removes the reference capability of a variable
ref reference capability — object (on which function is called) is mutable
repeat loop statement
return to return early from a function
tag reference capability — neither readable nor writeable, only object identity
then (1) in if conditional statement
(2) as a (finally) block in try
this the current object
trait used in nominal subtyping: class Foo is TraitName
trn reference capability — write uniqueness, no other actor can write to the object
try error handling
type to declare a type alias
until loop statement
use (1) using a package
(2) using an external library foo: use “lib:foo”
(3) declaration of an FFI signature
(4) add a search path for external libraries: use "path:/usr/local/lib"
var declaration of mutable variable: you can rebind this name to a new value
val reference capability — globally immutable object
where when specifying named arguments
while loop statement
with ensure disposal of an object
Examples

Small how do I examples for Pony. These will eventually find another home. Until then, they

live here.

Enumeration with values

primitive Black fun apply(): U32 => 0xFF000000

primitive Red

fun apply(): U32 => OxFFFF0000

appendices-examples-enumeration-with-values.pony:4:5

Enumeration with values with namespace

primitive Colours
fun black(): U32 => 0xFF000000
fun red(): U32 => 0xFFFF0000

appendices-examples-enumeration-with-values-with-namespace.pony:4:6

Enumeration which can be iterated

primitive Black
primitive Blue
primitive Red
primitive Yellow

146

type Colour is (Black | Blue | Red | Yellow)

primitive ColourList
fun tag apply(): Array[Colour] =>
[Black; Blue; Red; Yellow]

for colour in ColourList().values() do
end

appendices-examples-iterable-enumerations.pony

Pass an Array of values to FFI

use QeglChooseConfig[U32] (disp: Pointer[_EGLDisplayHandle], attrs: Pointer[U16] tag,
config: Pointer[_EGLConfigHandle], config_size: U32, num_config: Pointer[U32])

primitive _EGLConfigHandle

let a = Array[U16](8)

a.push(0x3040)

.push (0x4)

.push (0x3033)

.push (0x4)

.push (0x3022)

.push (0x8)

.push (0x3023)

.push (0x8)

.push (0x3024)

let config = Pointer[_EGLConfigHandle]

if @eglChooseConfig(e_dpy, a.cpointer(), config, U32(1), Pointer[U32]) == 0 then
env.out.print("eglChooseConfig failed")

[R R OB R O A O

end

appendices-examples-pass-array-of-values-to-fii.pony

How to access command line arguments

actor Main

new create(env: Env) =>
// The no of arguments
env.out.print(env.args.size() .string())
for value in env.args.values() do

env.out.print(value)

end
// Access the arguments the first one will always be the application name
try env.out.print(env.args(0)7) end

appendices-examples-access-command-line-arguments.pony

How to use the cli package to parse command line arguments

use "cli"

actor Main

147

new create(env: Env) =>
let command_spec =
try
CommandSpec. leaf (
"pony-embed",
"sample program",
[OptionSpec.string("output", "output filename", 'o') 1],
[ArgSpec.string("input", "source of input" where default' = "-")]
)? .> add_help()?
else
env.exitcode(1)
return
end
let command =
match CommandParser (command_spec) .parse(env.args, env.vars)
| let c: Command => c
| let ch: CommandHelp =>
ch.print_help(env.out)
env.exitcode(0)
return
| let se: SyntaxError =>
env.err.print(se.string())
env.exitcode(1)
return
end
let input_source = command.arg("input").string()
let output_filename = command.option("output").string()
env.out.print("Loading data from " + input_source + ". Writing output to " + output_fil

/] ...

appendices-examples-use-cli-package-to-parse-command-line-arguments.pony

How to write tests
Create a test.pony file

use "pony_test"

actor Main is TestList
new create(env: Env) => PonyTest(env, this)
new make() => None

fun tag tests(test: PonyTest) =>
test(_TestAddition)

class iso _TestAddition is UnitTest

nnn

Adding 2 numbers

nnn

fun name(): String => "u32/add"

fun apply(h: TestHelper) =>
h.assert_eq[U32] (2 + 2, 4)

148

appendices-examples-write-tests.pony

Some assertions you can make with TestHelper are

fun tag log(msg: String, verbose: Bool = false)

be fail() =>

be assert_failed(msg: String) =>

fun tag assert_true(actual: Bool, msg: String = "") 7

fun tag expect_true(actual: Bool, msg: String = ""): Bool
fun tag assert_false(actual: Bool, msg: String = "") 7
fun tag expect_false(actual: Bool, msg: String = ""): Boo
fun tag assert_error(test: ITest, msg: String = "") 7

fun tag expect_error(test: ITest box, msg: String = ""):

fun tag assert_is (expect:
fun tag expect_is (expect:

Any, actual: Any, msg: String
Any, actual: Any, msg: String

fun tag assert_eq[A: (Equatable[A] #read & Stringable)]

(expect: A, actual: A, msg: String = "") 7
fun tag expect_eql[A: (Equatable[A] #read & Stringable)]
(expect: A, actual: A, msg: String = ""): Bool

appendices-examples-test-helper.pony

Operator overloading (easy for copy and paste)

fun add(other:
fun sub(other:
fun mul (other:
fun div(other:
fun rem(other:
fun mod(other:

fun eq(other:
fun ne(other:
fun 1t (other:
fun le(other:
fun ge(other:
fun gt(other:

fun shl(other:
fun shr(other:
fun op_and(other:A): A
fun op_or(other: A): A
fun op_xor(othr: A): A

A):
A):
A):
A):
A):
A):

A):
A):
A):
A):
A):
A):

p)

p)

L

A
Bool
Bool
Bool
Bool
Bool
Bool

A
A

appendices-examples-operator-overloading.pony

Create empty functions in a class

class Test
fun alpha()

=>

fun beta() =>

149

1

Bool

n ll) '?
""): Bool

appendices-examples-empty-class-functions.pony

How to create Arrays with values
Single values can be separated by semicolon or newline.

let dice: Array[U32] = [1; 2; 3
4
5
6

]

appendices-examples-create-arrays-with-values.pony:5:9

How to modify a lexically captured variable in a closure

actor Main
fun foo(n:U32): {ref(U32): U32} =>
var s: Array[U32] = Array[U32].init(n, 1)
{ref(i:U32)(s): U32 =>
try
s(0)? = s(0)? + i
s(0)7?
else
0
end

new create(env:Env) =>
var £ = foo(b)
env.out.print (f(10) .string())
env.out.print (f(20).string())

appendices-examples-modify-a-lexically-captured-variable-in-a-closure.pony

Whitespace

Whitespace (e.g. spaces, tabs, newlines, etc.) in Pony isn’t significant.

Well, it mostly isn’t significant.

Mostly insignificant whitespace

Pony reads a bit like Python, which is a whitespace significant language. That is, the amount
of indentation on a line means something in Python. In Pony, the amount of indentation is

meaningless.
That means Pony programmers can format their code in whatever way suits them.

There are three exceptions:

1. A - at the beginning of a line starts a new expression (unary negation), whereas a - in

the middle of an expression is a binary operator (subtraction).

2. A (at the beginning of a line starts a new expression (a tuple), whereas a (in the middle

of an expression is a method call.

150

3. A [at the beginning of a line starts a new expression (an array literal), whereas a [in
the middle of an expression is generic formal parameters.

That stuff may seem a little esoteric right now, but we’ll explain it all later. The - part should
make sense though.

a-b>b
appendices-whitespace-subtract-b-from-a.pony:14:14
That means “subtract b from a”.

a
-b
appendices-whitespace-do-a-then-do-a-unary-negation-of-b.pony:14:15

That means “first do a, then, in a new expression, do a unary negation of b”.

Semicolons

In Pony, you don’t end an expression with a ;, unlike C, C++, Java, C#, etc. In fact, you
don’t need to end it at alll The compiler knows when an expression has finished, like Python
or Ruby.

However, sometimes it’s convenient to put more than one expression on the same line. When
you want to do that, you must separate them with a ;.

Why? Can’t the compiler tell an expression has finished? Yes, it can. The compiler
doesn’t really need the ;. However, it turns out the programmer does! By requiring a ; between
expressions on the same line, the compiler can catch some pretty common syntax errors for you.

Docstrings
Including documentation in your code makes you awesome. If you do it, everyone will love you.

Pony makes it easy by allowing you to put a docstring on every type, field, or method. Just
put a string literal right after declaring the type or field, or right after the => of a method,
before writing the body. The compiler will know what to do with them.

For traits and interfaces that have methods without bodies, you can put the docstring after the
method declaration, even though there is no =>.

By convention, a docstring should be a triple-quoted string, and it should use Markdown for
any formatting.

actor Main
nnn

This is documentation for my Main actor
nnn

var count: USize = 0
nmonn

This is documentation for my count field

new create(env: Env) =>
mmn

151

This is documentation for my create method
nnn

None

trait Readable
fun val read()

This is documentation for my unimplemented read method
nnn

appendices-whitespace-docstrings.pony

Comments

Use docstrings first! But if you need to put some comments in the implementation of your
methods, perhaps to explain what’s happening on various lines, you can use C++ style com-
ments. In Pony, block comments can be nested.

// This is a line comment.
/* This is a block comment. */
/* This block comment /* has another block comment */ inside of it. */

appendices-whitespace-comments.pony

Compiler Arguments

ponyc, the compiler, is usually called in the project directory, where it finds the .pony files and
its dependencies automatically. There it will create the binary based on the directory name.
You can override this and tune the compilation with several options as described via ponyc
--help and you can pass a separate source directory as an argument.

ponyc [OPTIONS] <package directory>

The most useful options are --debug, —-path or just —-p, ——output or just -o and --docs or
.

—--debug will skip the LLVM optimizations passes. This should not be mixed up with make
config=debug, the default make configuration target. config=debug will create DWARF sym-

bols, and add slower assertions to ponyc, but not to the generated binaries. For those, you can
omit DWARF symbols with the --strip or -s option.

--path or -p take a : separated path list as the argument and adds those to the compile-time
library paths for the linker to find source packages and the native libraries, static or dynamic,
being linked at compile-time or via the FFI at run-time. The system adds several paths already,
e.g. on windows it queries the registry to find the compiler run-time paths, you can also use use
"lib:path" statements in the source code and as a final possibility, you can add -p paths. But
if you want the generated binary to accept such a path to find a dynamic library on your client
system, you need to handle that in your source code by yourself. See the options package for
this.

—-—output or -o takes a directory name where the final binary is created.

-—docs or -g creates a directory of the package with documentation in Read the Docs format,
i.e. markdown with nice navigation.

Let’s study the documentation of the builtin standard library:

152

https://readthedocs.org

pip install mkdocs
ponyc packages/stdlib --docs && cd stdlib-docs && mkdocs serve

And point your web browser to 127.0.0.1:8000 serving a live-reloading local version of the docs.

Note that there is no built-in debugger to interactively step through your program and interpret
the results. But ponyc creates proper DWARF symbols and you can step through your programs
with a conventional debugger, such as GDB or LLDB.

Runtime options for Pony programs

Besides using the c1i package, there are also several built-in options for the generated binary
(not for use with ponyc) starting with —-pony*, see ponyc --help, to tweak runtime perfor-
mance. You can override the number of initial threads, tune cycle detection (CD), the garbage
collector and even turn off yield, which is not really recommended.

Memory Allocation at Runtime

Pony is a null-free, type-safe language, with no dangling pointers, no buffer overruns, but with
a very fast garbage collector, so you don’t have to worry about explicit memory allocation,
if on the heap or stack, if in a threaded actor, or not.

Fast, Safe and Cheap

e An actor has ~240 bytes of memory overhead.

e No locks. No context switches. All mutation is local.

e An idle actor consumes no resources (other than memory).
¢ You can have millions of actors at the same time.

But Caveat Emptor
But Pony can use external C libraries via the FFI which does not have this luxury.

So you can use any external C library out there, but the question is if you need to and if you
should.

The biggest problem is external heap memory, created by an external FFI call, or created to
support an external call. But external stack space might also need some thoughts, esp. when
being created from actors.

Pony does have finalisers (callbacks which are called by the garbage collector which may be
used to free resources allocated by an FFI call); However, the garbage collector is not timely
(as with pure reference counting), it is not triggered immediately when some object goes out of
scope.

A blocked actor will keep its memory allocated, only a dead actor will release it eventually.

And, long-running actors

Might cause unexpected out of memory errors, since the GC is not yet triggered on an out-of-
memory segfault or stack exhaustion.

153

http://127.0.0.1:8000

Garbage Collection with Pony-ORCA

Pony-ORCA is a fully concurrent protocol for garbage collection in the actor paradigm. It
allows cheap and small actors to perform garbage collection concurrently with any number of
other actors, and this number can go into the millions since one actor needs only 256 bytes
on 64bit systems. It does not require any form of synchronization across actors except those
introduced through the actor paradigm, i.e. message send and message receive.

Pony-ORCA, yes the killer whale, is based on ideas from ownership and deferred, distributed,
weighted reference counting. It adapts messaging systems of actors to keep the reference
count consistent. The main challenges in concurrent garbage collection are the detection of
cycles of sleeping actors in the actor’s graph, in the presence of the concurrent mutation of this
graph. With message passing, you get deferred direct reference counting, a dedicated actor for
the detection of (cyclic) garbage, and a confirmation protocol (to deal with the mutation of the
actor graph).

1. Soundness: the technique collects only dead actors.
2. Completeness: the technique collects all dead actors eventually.

3. Concurrency: the technique does not require a stop-the-world step, clocks, time stamps,
versioning, thread coordination, actor introspection, shared memory, read/write barriers
or cache coherency.

The type system ensures at compile time that your program can never have data races. It’s
deadlock free... Because Pony has no locks!

When an actor has completed local execution and has no pending messages on its queue, it is
blocked. An actor is dead, if it is blocked and all actors that have a reference to it are blocked,
transitively. A collection of dead actors depends on being able to collect closed cycles of blocked
actors.

The Pony type system guarantees race and deadlock free concurrency and soundness by adhering
to the following principles:

Pony-ORCA characteristics

1. An actor may perform garbage collection concurrently with other actors while they are
executing any kind of behaviour.

2. An actor may decide whether to garbage collect an object solely based on its own local
state, without consultation with or inspecting the state of any other actor.

3. No synchronization between actors is required during garbage collection, other than po-
tential message sends.

4. An actor may garbage collect between its normal behaviours, i.e. it need not wait until
its message queue is empty.

5. Pony-ORCA can be applied to several other programming languages, provided that they
satisfy the following two requirements:

e Actor behaviours are atomic.

e Message delivery is causal. Causal: messages arrive before any messages they
may have caused if they have the same destination. So there needs to be some kind of
causal ordering guarantee, but fewer requirements than with comparable concurrent,
fast garbage collectors.

154

https://www.google.com/search?q=causal+definition

Platform-dependent Code

The Pony libraries, of course, want to abstract platform differences. Sometimes you may want a
use command that only works under certain circumstances, most commonly only on a particular
OS or only for debug builds. You can do this by specifying a condition for a use command:

use "foo" if linux
use "bar" if (windows and debug)

appendices-platform-dependent-code.pony

Use conditions can use any of the methods defined in builtin/Platform as conditions. There
are currently the following booleans defined: freebsd, linux, osx, posix => (freebsd or
linux or osx), windows, x86, arm, 1p64, 11p64, i1p32, nativel28, debug

They can also use the operators and, or, xor and not. As with other expressions in Pony,
parentheses must be used to indicate precedence if more than one of and, or and xor is used.

Any use command whose condition evaluates to false is ignored.

A Short Guide to Pony Error Messages

You've been through the tutorial, you’ve watched some videos, and now you’re ready to write
some Pony code. You fire up your editor, shovel coal into the compiler, and...you find yourself
looking at a string of gibberish.

Don’t panic! Pony’s error messages try to be as helpful as possible and the ultimate goal is to
improve them further. But, in the meantime, they can be a little intimidating.

This section tries to provide a short bestiary of Pony’s error messages, along with a guide to
understanding them.

Let’s start with a simple one.

left side must be something that can be assigned to
Suppose you wrote:

actor Main
let x: 164 =0
new create(env: Env) =>
x = 12

error-messages-left-side-must-be-something-that-can-be-assigned-to.pony

The error message would be:

Error:

main.pony:4:5: can't assign to a let or embed definition more than once
x =12

Error:

main.pony:4:7: left side must be something that can be assigned to
x = 12

155

What happened is that you declared x as a constant, by writing let x, and then tried to assign
a new value to it, 12. To fix the error, replace let with var or reconsider what value you want
x to have.

That one error resulted in two error messages. The first, pointing to the x, describes the specific
problem, that x was defined with 1let. The second, pointing to the = describes a more general
error, that whatever is on the left side of the assignment is not something that can be assigned
to. You would get that same error message if you attempted to assign a value to a literal, like
3.

left side is immutable
Suppose you create a class with a mutable field and added a method to change the field:

class Wombat
var color: String = "brown"
fun dye(new_color: String) =>
color = new_color

error-messages-left-side-is-immutable.pony
The error message would be:

Error:
main.pony:4:11: left side is immutable
color = new_color

To understand this error message, you have to have some background. The field color is
mutable since it is declared with var, but the method dye does not have an explicit receiver
reference capability. The default receiver reference capability is box, which allows dye to be
called on any mutable or immutable Wombat; the box reference capability says that the method
may read from but not write to the receiver. As a result, it is illegal to attempt to modify the
receiver in the method.

To fix the error, you would need to give the dye method a mutable reference capability, such as
ref: fun ref dye(new_color: String) =>

receiver type is not a subtype of target type
Suppose you made a related, but slightly different error:

class Rainbow
let colors: Array[String] = Array[String]
fun add_stripe(color: String) =>
colors.push(color)

error-messages-receiver-type-is-not-a-subtype-of-target-type.pony

In this example, rather than trying to change the value of a field, the code calls a method which
attempts to modify the object referred to by the field.

The problem is very similar to that of the last section, but the error message is significantly
more complicated:

Error:
main.pony:4:16: receiver type is not a subtype of target type
colors.push(color)

156

Info:

main.pony:4:5: receiver type: this->Array[String val] ref (which becomes 'Array[String -

colors.push(color)

/root/.local/share/ponyup/ponyc-release-0.58.0-x86_64-1linux-musl/packages/builtin/array

fun ref push(value: A) =>

main.pony:2:15: Array[String val] box is not a subtype of Array[String vall ref~:

let colors: Array[String] = Array[String]

box i

main.pony:3:3: you are trying to change state in a box function; this would be possible

fun add_stripe(color: String) =>

Once again, Pony is trying to be helpful. The first few lines describe the error, in general terms
that only a programming language maven would like: an incompatibility between the receiver
type and the target type. However, Pony provides more information: the lines immediately
after “Info:” tell you what it believes the receiver type to be and the next few lines describe
what it believes the target type to be. Finally, the last few lines describe in detail what the
problem is.

Unfortunately, this message does not locate the error as clearly as the previous examples.

Breaking it down, the issue seems to be with the call to push, with the receiver colors. The
receiver type is this->Array[String val] ref;in other words, the view that this method has
of a field whose type is Array[String val] ref. In the class Rainbow, the field colors is
indeed declared with the type Array[String], and the default reference capability for Strings
is val while the default reference capability for Array is ref.

The “target type” in this example is the type declaration for the method push of the class Array,
with its type variable A replaced by String (again, with a default reference capability of val).
The reference capability for the overall array, as required by the receiver reference capability of
push, is ref. It seems that the receiver type and the target type should be pretty close.

But take another look at the final lines: what Pony thinks is the actual receiver type,
Array[String vall] box, is significantly different from what it thinks is the actual target type,
Array[String val] ref. And a type with a reference capability of box, which is immutable,
is indeed not a subtype of a type with a reference capability of ref, which is mutable.

The issue must lie with the one difference between the receiver type and the target type, which is
the prefix “this->". The type this->Array[String val] ref is a viewpoint adapted type, or
arrow type, that describes the Array[String val] ref “as seen by the receiver”. The receiver,
in this case, has the receiver reference capability of the method add_stripe, which is the default
box. That is why the final type is Array[String vall] box.

The fundamental error in this example is the same as the last: the default receiver reference
capability for a method is box, which is immutable. This method, however, is attempting to
modify the receiver, by adding another color stripe. That is not legal at all.

As an aside, while trying to figure out what is happening, you may have been misled by the
declaration of the colors field, let colors.... That declaration makes the colors binding
constant. As a result, you cannot assign a new array to the field. On the other hand, the array
itself can be mutable or immutable. In this example, it is mutable, allowing push to be called
on the colors field in the add_stripe method.

157

A note on compiler versions

The error messages shown in this section are from ponyc 0.58.0-a161b7c¢ release, the current
“release” version at the time this is written. The messages from other versions of the compiler
may be different, to a greater or lesser degree.

Program Annotations

In Pony, we provide a special syntax for implementation-specific annotations to various ele-
ments of a program. The basic syntax is a comma-separated list of identifiers surrounded by
backslashes:

\annotationl, annotation2\
appendices-annotations-syntax.pony

Here, annotationl and annotation2 can be any valid Pony identifier, i.e. a sequence of al-
phanumeric characters starting with a letter or an underscore.

What can be annotated
Annotations are allowed after any scoping keyword or symbol. The full list is:

e actor

e class

e struct

e primitive

e trait

e interface

e new

e fun

e be

o if (only as a condition, not as a guard)
o ifdef

e elseif

e else

e while

e repeat

e until

o for

e match

o | (only as a case in a match expression)
e Trecover

e object

e { (only as a lambda)

e with

o try

o then (only when part of a try block)

The effect of annotations

Annotations are entirely implementation-specific. In other words, the Pony compiler (or any
other tool that processes Pony programs) is free to take any action for any annotation that it

158

encounters, including not doing anything at all. Annotations starting with ponyint are reserved
by the compiler for internal use and shouldn’t be used by external tools.

Annotations in the Pony compiler

The following annotations are recognised by the Pony compiler. Note that the Pony compiler
will ignore annotations that it doesn’t recognise, as well as the annotations described here if
they’re encountered in an unexpected place.

packed Recognised on a struct declaration. Removes padding in the associated struct,
making it ABI-compatible with a packed C structure with compatible members (declared with
the __attribute__((packed)) extension or the #pragma pack preprocessor directive in many
C compilers).

struct \packed\ MyPackedStruct
var x: U8
var y: U32

appendices-annotations-packed-annotation.pony:1:3

likely and unlikely Recognised on a conditional expression (if, while, until and | (as a
pattern matching case)). Gives optimisation hints to the compiler on the likelihood of a given
conditional expression.

nodoc

Recognised on objects and methods (actor, class, struct, primitive, trait, interface,
new, be, fun). Indicates to the documentation system that the item and any of its children
shouldn’t be included in generated output.

class \nodoc\Foo

nnn

We don't want this class and its methods to appear in generated documentation
nnn

appendices-annotations-nodoc-annotation.pony

nosupertype

Recognised on objects(actor, class, primitive, struct). A type annotated with nosupertype
will not be a subtype of any other type (except _), even if the type structurally provides an
interface. If a nosupertype type has a provides list, a compiler error is reported. As a result,
a nosupertype type is excluded from both nominal and structural subtyping.

Here’s an example of how nosupertype can be important:
class Empty
class Foo
fun foo[A: Any](a: (A | Empty val)) =>
match consume a

| let a': A => None
end

appendices-annotations-empty-without-nosupertype-annotation.pony

159

The above code won’t compile because you could supply Empty ref. Doing so results in a
compiler error about an unsafe match because we would need to distinguish between Empty
val and Empty ref at runtime.

By adding nosupertype to the definition of Empty, we declare that Empty is not a subtype of
Any and thereby allow the code to compile as there is no longer an unsafe match.

class \nosupertype\ Empty

class Foo
fun foo[A: Any](a: (A | Empty val)) =>
match consume a
| let a': A => None
end

appendices-annotations-empty-with-nosupertype-annotation.pony:1:7

nosupertype is particularly valuable when constructing generic classes like collections that need
a marker class to describe “lack of an item”.

Serialisation

Pony provides a built-in mechanism for serialising and deserialising objects so that they can be
passed between Pony processes. Serialisation takes an object and turns it into an array of bytes
that can be used to send the object to another process by, for example, writing it to a TCP
stream. Deserialisation takes an array of bytes and turns them into a Pony object.

Pony uses an intermediate object type called Serialised to represent a serialised object. A
Serialised object can be created in one of two ways:

e calling the create(...) constructor with the SerialiseAuth authority and the object
to serialize

e calling the input(...) constructor with the DeserialiseAuth authority and an
Array[U8] that represents the object to deserialise. This intermediate object can then
be used to either:

— generate an Array[U8] that represents the object by calling the output(...)
method with the OutputSerialisedAuth authority, or

— generate a deserialised object by calling the apply(...) method with the
InputSerialisedAuth authority

This program serialises and deserialise an object, and checks that the fields of the original object
are the same as the fields of the deserialised object.

use "serialise"
class Foo is Equatable[Foo box]
let _s: String
let _u: U32
new create(s: String, u: U32) =>
8 =s
_u=au

fun eq(foo: Foo box): Bool =>

160

(_s == foo._s) and (_u == foo._u)

actor Main
new create(env: Env) =>
try
// get serialization authorities
let serialise = SerialiseAuth(env.root)
let output = OutputSerialisedAuth(env.root)
let deserialise = DeserialiseAuth(env.root)
let input = InputSerialisedAuth(env.root)

let fool = Foo("abc", 123)

// serialisation
let sfoo = Serialised(serialise, fool)?
let bytes_foo: Array[U8] val = sfoo.output(output)

env.out.print("serialised representation is " +
bytes_foo.size() .string() +
" bytes long")

// deserialisation
let dfoo = Serialised.input(input, bytes_foo)
let foo2 = dfoo(deserialise)? as Foo

env.out.print (" (fool == fo002) is " + (fool == fo002).string())
else

env.err.print("there was an error")
end

appendices-serialization-compare-original-object-with-deserialized-object.pony

Caveats
There are several things to keep in mind when using Pony’s serialisation system:

e Serialised objects will currently only work when passed between two running instances
of the same Pony executable. You cannot pass objects between different Pony pro-
grams, nor can you pass them between different versions of the same program. Using
the Serialise.signature function can help you determine if your two Pony programs
are the same.

e Objects with embed fields will not be properly serialised.

e Objects with Pointer fields must use the custom serialisation mechanism or else the
Pointer fields will be null when the object is deserialised. For information on how to han-
dle these kinds of fields, please see the discussion of custom serialisation and deserialisation
below.

Custom Serialisation and Deserialisation

Pony objects can have Pointer fields that store pointers to memory that contains things that
are opaque to Pony but that may be useful to code that is called via FFI. Because the objects
that Pointer fields point to are opaque, Pony cannot serialise and deserialise them by itself.
However, Pony’s serialisation system provides a way for the programmer to specify how the

161

objects pointed to by these fields should be serialised and deserialised. This system is called
custom serialisation.

Since Pointer fields are opaque to Pony, it is assumed that the serialisation and deserialisation
code will be written in another language that knows how to read the object referenced by the
pointers.

Custom Serialisation

In order to serialise an object from a pointer field, Pony needs to know how much space to set
aside for that object and how to write a representation of that object into the reserved space.
The programmer must provide two methods on the object:

e fun _serialise_space(): USize — This method returns the number of bytes that must
be reserved for the object.

o fun _serialise(bytes: Pointer[U8] tag) — This method receives a pointer to the
memory that has been set aside for serialising the object. The programmer must not
write more bytes than were returned by the _serialise_space method.

Custom Deserialisation

Custom deserialisation is handled by a fun ref _deserialise(bytes: Pointer[U8] tag)
method. This method receives a pointer to the character array that stores the serialised repre-
sentation of the object (or objects) that the Pointer fields should point to. The programmer
must copy out any bytes that will be used by the deserialised object.

The custom deserialisation method is expected to modify the values of the objects Pointer
fields, so the fields must be declared var so that they can be modified.

Considerations

Fixed Versus Variable Object Sizes The programmer must write their custom serialisation
and deserialisation code in such a way that it is aware of how many bytes are available in the
byte arrays that are passed to the methods. If the objects are always of a fixed size then the
functions can read and write that many bytes to the buffer. However, if the objects are of
varying sizes (for example, if the object was a string), then the serialized representation must
include information that the deserialisation code can use to ensure that it does not read beyond
the end of the memory occupied by the object. The custom serialisation system does not provide
a mechanism for doing this, so it is up to the program to choose a mechanism and implement
it. In the case of a string, the serialisation format could consist of a 4-byte header that encodes
the length of the string, followed by a string of the specified length. These additional four bytes
must be included in the value returned by _serialise_space(). The deserialisation function
would then start by reading the first four bytes of the array to obtain the size of the string and
then read only that many bytes from the array.

Classes With Multiple Pointer Fields If a class has more than one Pointer field then all
of those fields must be handled by the custom serialisation and deserialisation methods for that
class; there are not methods for each field. For example, if a class has three Pointer fields then
the _serialise_space() method must return the total number of bytes required to serialise
the objects from all three fields.

162

Example

Assume we have a Pony class with a field that is a pointer to a C string. We would like to
be able to serialise and deserialise this object. In order to do that, the Pony class implements
the methods _serialise_space(...), _serialise(...), and _deserialise(...). These
methods, in turn, call C functions that calculate the number of bytes needed to serialise the
string and serialise and deserialise it. In this example the serialised string is represented by a
four-byte big-endian number that represents the length of the string, followed by the string itself
without the terminating null. So if the C string is hello world\O then the serialised string is
\0x00\0x00\0x00\0x0Bhello world (where the first four bytes of the serialised string are a
big-endian representation of the number 0x0000000B, which is 11).

use "serialise"
use "lib:custser"

use Qget_string[Pointer[U8]]()

use @serialise_space[USize] (s: Pointer[U8] tag)

use Oserialise[None] (bytes: Pointer[U8] tag, str: Pointer[U8] tag)
use Q@deserialise[Pointer[U8] tag] (bytes: Pointer[U8] tag)

use @printf[I32] (fmt: Pointer[U8] tag, ...)

class CStringWrapper
var _cstr: Pointer[U8] tag

new create(cstr: Pointer[U8] tag) =>
_cstr = cstr

fun _serialise_space(): USize =>
@serialise_space(_cstr)

fun _serialise(bytes: Pointer[U8] tag) =>
@serialise(bytes, _cstr)

fun ref _deserialise(bytes: Pointer[U8] tag) =>
_cstr = Qdeserialise(bytes)

fun print() =>
@printf (_cstr)

actor Main
new create(env: Env) =>
let csw = CStringWrapper (@get_string())
csw.print ()
try
let serialise = SerialiseAuth(env.root)
let deserialise = DeserialiseAuth(env.root)

let sx = Serialised(serialise, csw)?
let y = sx(deserialise)? as CStringWrapper
y.print ()

else

163

env.err.print("there was an error")
end

appendices-serialization-custom-serialization.pony

// custser.c

#include <stdlib.h>
#include <string.h>

extern char *get_string()

{
return "hello world\n";
}
extern size_t serialise_space(char *s)
{
// space for the size and the string (without the null)
return 4 + strlen(s);
}
extern void serialise(char *buff, char *s)
{
size_t sz = strlen(s);
unsigned char *ubuff = (unsigned char *) buff;
// write the size as a 32-bit big-endian integer
ubuff[0] = (sz >> 24) & OxFF;
ubuff[1] = (sz >> 16) & OxFF;
ubuff[2] = (sz >> 8) & OxFF;
ubuff[3] = sz & OxFF;
// copy the string
stroncpy (buff + 4, s, sz);
}
extern char *deserialise(char *buff)
{
unsigned char *ubuff = (unsigned char *) buff;
size_t sz = (ubuff[0] << 24) + (ubuff[1] << 16) + (ubuff[2] << 8) + ubuff[3];
char *s = malloc(sizeof(char) * sz + 1);
memcpy (s, buff + 4, sz);
s[sz] = '"\0';
return s;
}

164

	Pony Tutorial
	What’s Pony, anyway?
	The Pony Philosophy: Get Stuff Done
	Guiding Principles
	More help
	Help us

	Getting Started
	What You Need
	The Pony compiler
	A text editor
	The compiler
	Compiling your program

	Hello World – Your First Pony Program
	The code
	Compiling the program
	Running the program

	Hello World – How It Works
	Line 1
	Line 2
	Line 3
	That’s it!

	Types
	The Pony Type System at a Glance
	Static vs Dynamic: What’s the difference?
	Types are guarantees
	What guarantees does Pony’s type system give me?

	Classes
	What goes in a class?
	Fields
	Constructors
	Zero Argument Constructors
	Functions
	Finalisers

	What about inheritance?
	Naming rules

	Primitives
	What can you use a primitive for?
	Built-in primitive types
	Primitive initialisation and finalisation

	Actors
	Behaviours
	Message Passing
	Concurrent
	Sequential
	Why is this safe?
	Actors are cheap
	Actor finalisers

	Traits and Interfaces
	Nominal subtyping
	Structural subtyping
	Nominal and structural subtyping in Pony
	Nominal subtyping in Pony
	Structural subtyping in Pony

	Differences between traits and interfaces
	Private methods
	Open world enumerations
	Open world typing

	Structs
	Structs are “classes for FFI”
	What goes in a struct?
	Fields
	Constructors
	Functions

	We’ll see structs again

	Type Aliases
	Enumerations
	Complex types
	Other stuff

	Type Expressions
	Tuples
	Unions
	Intersections
	Combining type expressions

	Expressions
	Literals
	Boolean Literals
	Numeric Literals
	Character Literals
	Multibyte Character literals

	String Literals
	String Literals and Encodings
	Triple quoted Strings
	String Literal Instances

	Array Literals
	Type inference
	As Expression
	Arrays and References

	Variables
	Local variables
	Var vs. let
	Fields
	Embedded Fields
	Global variables
	Shadowing

	Operators
	Infix Operators
	Operator aliasing
	Short circuiting
	Unary operators
	Precedence

	Arithmetic
	Integers
	Pony’s default Integer Arithmetic
	Unsafe Integer Arithmetic
	Partial and Checked Arithmetic

	Floating Point
	Unsafe Floating Point Arithmetic

	Control Structures
	Conditionals
	Control structures are expressions
	Loops
	While
	Break
	Continue
	For
	Repeat

	Match Expressions
	Matching: the basics
	Else cases

	Matching on values
	Matching on type and value
	Captures
	Implicit matching on capabilities in the context of union types
	Matching tuples
	Guards

	As Operator
	Expressing a different type of an object
	Specify the type of items in an array literal

	Methods
	Functions
	Constructors
	Calling
	Default arguments
	Named arguments
	Chaining
	Anonymous methods
	Privacy
	Precedence

	Errors
	Raising and handling errors
	Partial functions
	Partial constructors and behaviours
	Try-then blocks
	With blocks
	Language constructs that can raise errors
	Comparison to exceptions in other languages

	Equality in Pony
	Identity equality
	Structural equality
	Primitives and equality

	Sugar
	Apply
	Create
	Combined create-apply
	Update
	See also

	Object Literals
	What’s this look like, then?
	Lambdas
	Actor literals
	Primitive literals

	Partial Application
	A simple case
	Out of order arguments
	Partial application is just a lambda
	Partially applying a partial application

	Reference Capabilities
	Reference Capabilities
	Rights are part of a capability
	Basic concepts
	Shared mutable data is hard
	Immutable data can be safely shared
	Isolated data is safe
	Isolated data may be complex
	Every actor is single threaded

	Type qualifiers
	The list of reference capabilities
	How to write a reference capability
	How to create objects with different capabilities

	Reference Capability Guarantees
	What is denied
	Mutable reference capabilities
	Immutable reference capabilities
	Opaque reference capabilities

	Consume and Destructive Read
	Consuming a variable
	Destructive read

	Recovering Capabilities
	Why is this useful?
	What does this look like?
	How does this work?
	Automatic receiver recovery

	Aliasing
	Aliasing and deny guarantees
	What counts as making an alias?
	Alias types
	Ephemeral types

	Passing and Sharing References
	Passing
	Sharing
	Reference capabilities that can’t be sent

	Capability Subtyping
	Simple subtypes
	Subtypes of unique capabilities
	Temporary unique access

	Combining Capabilities
	Viewpoint adaptation
	Explaining why
	Reading from an iso variable
	Reading from a trn variable
	Reading from a ref variable
	Reading from a val variable
	Reading from a box variable
	Reading from a tag variable

	Writing to the field of an object

	Arrow Types aka Viewpoints
	Using this-> as a viewpoint
	Using a type parameter as a viewpoint
	Using box-> as a viewpoint

	Reference Capability Matrix
	Local and global aliases
	Reference capability matrix

	Object Capabilities
	Object Capabilities
	How is that unforgeable?
	What about global variables?
	How does this help?
	Capabilities and concurrency

	Delegating and restricting authority
	Restrict, then delegate your authority
	Authorization-friendly interface
	Authority hierarchies

	Trust Boundary
	Trust boundaries
	Safe packages

	Generics
	Generic Classes
	Type parameter defaults

	Generic Methods

	Generics and Reference Capabilities
	An iso specific class
	A capability generic class

	Constraints
	Capability Constraints

	Packages
	The package structure

	Use Statement
	Use names
	Scheme indicators

	Standard Library
	Testing
	Testing with PonyTest
	Example program
	Test names
	Aggregation
	Long tests
	Exclusion groups
	Tear down
	Additional resources

	Testing with PonyCheck
	Usage
	Integration with PonyTest
	Additional resources

	C-FFI
	Calling C from Pony
	Safely does it
	C types
	Get and Pass Pointers to FFI
	Working with Structs: from Pony to C
	Working with Structs: from C to Pony
	Return-type Polymorphism
	Variadic C functions

	FFI functions raising errors
	Type signature compatibility
	Calling FFI functions from Interfaces or Traits

	Linking to C Libraries
	Use for external libraries

	C ABI
	Writing a C library for Pony

	Callbacks
	Bare functions
	Bare lambdas
	An example

	Gotchas
	Divide by Zero
	Divide by zero in Pony
	Divide by zero on floating points

	Garbage Collection
	Garbage Collection in the world at large
	Garbage Collection in Pony
	Long running behaviors and memory

	Scheduling
	FFI and monopolizing the scheduler
	Long running behaviors

	Function Call Side Effects
	Recursion
	Where Next?
	“Learn” section the Pony website
	Planet Pony
	Pony Patterns
	Standard Library Documentation
	Pony Zulip
	Pony Virtual Users’ Group
	A final word

	Appendices
	PONYPATH
	Adding to PONYPATH
	Unix/Mac
	Windows

	Lexicon
	Terminology

	Symbol Lookup Cheat Sheet
	Keywords
	Examples
	Enumeration with values
	Enumeration with values with namespace
	Enumeration which can be iterated
	Pass an Array of values to FFI
	How to access command line arguments
	How to use the cli package to parse command line arguments
	How to write tests
	Operator overloading (easy for copy and paste)
	Create empty functions in a class
	How to create Arrays with values
	How to modify a lexically captured variable in a closure

	Whitespace
	Mostly insignificant whitespace
	Semicolons
	Docstrings
	Comments

	Compiler Arguments
	Runtime options for Pony programs

	Memory Allocation at Runtime
	Fast, Safe and Cheap
	But Caveat Emptor
	And, long-running actors

	Garbage Collection with Pony-ORCA
	Pony-ORCA characteristics

	Platform-dependent Code
	A Short Guide to Pony Error Messages
	left side must be something that can be assigned to
	left side is immutable
	receiver type is not a subtype of target type
	A note on compiler versions

	Program Annotations
	What can be annotated
	The effect of annotations
	Annotations in the Pony compiler
	nodoc
	nosupertype

	Serialisation
	Caveats
	Custom Serialisation and Deserialisation
	Custom Serialisation
	Custom Deserialisation
	Considerations
	Example

